Cargando…

Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release

5′-aminolevulinate synthase (ALAS) catalyzes the first step in heme biosynthesis, generating 5′-aminolevulinate from glycine and succinyl-CoA. Inherited frameshift indel mutations of human erythroid-specific isozyme ALAS2, within a C-terminal (Ct) extension of its catalytic core that is only present...

Descripción completa

Detalles Bibliográficos
Autores principales: Bailey, Henry J., Bezerra, Gustavo A., Marcero, Jason R., Padhi, Siladitya, Foster, William R., Rembeza, Elzbieta, Roy, Arijit, Bishop, David F., Desnick, Robert J., Bulusu, Gopalakrishnan, Dailey, Harry A., Yue, Wyatt W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272653/
https://www.ncbi.nlm.nih.gov/pubmed/32499479
http://dx.doi.org/10.1038/s41467-020-16586-x
Descripción
Sumario:5′-aminolevulinate synthase (ALAS) catalyzes the first step in heme biosynthesis, generating 5′-aminolevulinate from glycine and succinyl-CoA. Inherited frameshift indel mutations of human erythroid-specific isozyme ALAS2, within a C-terminal (Ct) extension of its catalytic core that is only present in higher eukaryotes, lead to gain-of-function X-linked protoporphyria (XLP). Here, we report the human ALAS2 crystal structure, revealing that its Ct-extension folds onto the catalytic core, sits atop the active site, and precludes binding of substrate succinyl-CoA. The Ct-extension is therefore an autoinhibitory element that must re-orient during catalysis, as supported by molecular dynamics simulations. Our data explain how Ct deletions in XLP alleviate autoinhibition and increase enzyme activity. Crystallography-based fragment screening reveals a binding hotspot around the Ct-extension, where fragments interfere with the Ct conformational dynamics and inhibit ALAS2 activity. These fragments represent a starting point to develop ALAS2 inhibitors as substrate reduction therapy for porphyria disorders that accumulate toxic heme intermediates.