Cargando…
A Novel Detector Based on Convolution Neural Networks for Multiscale SAR Ship Detection in Complex Background
Convolution neural network (CNN)-based detectors have shown great performance on ship detections of synthetic aperture radar (SAR) images. However, the performance of current models has not been satisfactory enough for detecting multiscale ships and small-size ones in front of complex backgrounds. T...
Autores principales: | Dai, Wenxin, Mao, Yuqing, Yuan, Rongao, Liu, Yijing, Pu, Xuemei, Li, Chuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273208/ https://www.ncbi.nlm.nih.gov/pubmed/32365747 http://dx.doi.org/10.3390/s20092547 |
Ejemplares similares
-
Application of Convolutional Neural Network (CNN) to Recognize Ship Structures
por: Lim, Jae-Jun, et al.
Publicado: (2022) -
NSD-SSD: A Novel Real-Time Ship Detector Based on Convolutional Neural Network in Surveillance Video
por: Sun, Jiuwu, et al.
Publicado: (2021) -
MW-ACGAN: Generating Multiscale High-Resolution SAR Images for Ship Detection
por: Zou, Lichuan, et al.
Publicado: (2020) -
Ship Type Classification by Convolutional Neural Networks with Auditory-Like Mechanisms
por: Shen, Sheng, et al.
Publicado: (2020) -
Multiscale Convolutional Neural Networks with Attention for Plant Species Recognition
por: Wang, Xianfeng, et al.
Publicado: (2021)