Cargando…
Edge Machine Learning for AI-Enabled IoT Devices: A Review
In a few years, the world will be populated by billions of connected devices that will be placed in our homes, cities, vehicles, and industries. Devices with limited resources will interact with the surrounding environment and users. Many of these devices will be based on machine learning models to...
Autores principales: | Merenda, Massimo, Porcaro, Carlo, Iero, Demetrio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273223/ https://www.ncbi.nlm.nih.gov/pubmed/32365645 http://dx.doi.org/10.3390/s20092533 |
Ejemplares similares
-
TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI Applications
por: Alajlan, Norah N., et al.
Publicado: (2022) -
Power Efficient Machine Learning Models Deployment on Edge IoT Devices
por: Fanariotis, Anastasios, et al.
Publicado: (2023) -
Review of Botnet Attack Detection in SDN-Enabled IoT Using Machine Learning
por: Negera, Worku Gachena, et al.
Publicado: (2022) -
Horizontally Distributed Inference of Deep Neural Networks for AI-Enabled IoT
por: Rodriguez-Conde, Ivan, et al.
Publicado: (2023) -
EEI-IoT: Edge-Enabled Intelligent IoT Framework for Early Detection of COVID-19 Threats
por: Deebak, B. D., et al.
Publicado: (2023)