Cargando…
A Method to Learn Embedding of a Probabilistic Medical Knowledge Graph: Algorithm Development
BACKGROUND: Knowledge graph embedding is an effective semantic representation method for entities and relations in knowledge graphs. Several translation-based algorithms, including TransE, TransH, TransR, TransD, and TranSparse, have been proposed to learn effective embedding vectors from typical kn...
Autores principales: | Li, Linfeng, Wang, Peng, Wang, Yao, Wang, Shenghui, Yan, Jun, Jiang, Jinpeng, Tang, Buzhou, Wang, Chengliang, Liu, Yuting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273238/ https://www.ncbi.nlm.nih.gov/pubmed/32436854 http://dx.doi.org/10.2196/17645 |
Ejemplares similares
-
A type-augmented knowledge graph embedding framework for knowledge graph completion
por: He, Peng, et al.
Publicado: (2023) -
Hashing-based semantic relevance attributed knowledge graph embedding enhancement for deep probabilistic recommendation
por: Khan, Nasrullah, et al.
Publicado: (2022) -
Document-level medical relation extraction via edge-oriented graph neural network based on document structure and external knowledge
por: Li, Tao, et al.
Publicado: (2021) -
Embedding Learning with Triple Trustiness on Noisy Knowledge Graph
por: Zhao, Yu, et al.
Publicado: (2019) -
Hierarchical Molecular Graph Self-Supervised Learning for property prediction
por: Zang, Xuan, et al.
Publicado: (2023)