Cargando…
Extending A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter to England, UK
The rapidly evolving COVID-19 pandemic presents challenges for actively monitoring its transmission. In this study, we extend a social media mining approach used in the US to automatically identify personal reports of COVID-19 on Twitter in England, UK. The findings indicate that natural language pr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273260/ https://www.ncbi.nlm.nih.gov/pubmed/32511492 http://dx.doi.org/10.1101/2020.05.05.20083436 |
_version_ | 1783542366917885952 |
---|---|
author | Golder, S Klein, Ari Z. Magge, Arjun O’Connor, Karen Cai, Haitao Weissenbacher, Davy Gonzalez-Hernandez, Graciela |
author_facet | Golder, S Klein, Ari Z. Magge, Arjun O’Connor, Karen Cai, Haitao Weissenbacher, Davy Gonzalez-Hernandez, Graciela |
author_sort | Golder, S |
collection | PubMed |
description | The rapidly evolving COVID-19 pandemic presents challenges for actively monitoring its transmission. In this study, we extend a social media mining approach used in the US to automatically identify personal reports of COVID-19 on Twitter in England, UK. The findings indicate that natural language processing and machine learning framework could help provide an early indication of the chronological and geographical distribution of COVID-19 in England. |
format | Online Article Text |
id | pubmed-7273260 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-72732602020-06-07 Extending A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter to England, UK Golder, S Klein, Ari Z. Magge, Arjun O’Connor, Karen Cai, Haitao Weissenbacher, Davy Gonzalez-Hernandez, Graciela medRxiv Article The rapidly evolving COVID-19 pandemic presents challenges for actively monitoring its transmission. In this study, we extend a social media mining approach used in the US to automatically identify personal reports of COVID-19 on Twitter in England, UK. The findings indicate that natural language processing and machine learning framework could help provide an early indication of the chronological and geographical distribution of COVID-19 in England. Cold Spring Harbor Laboratory 2020-05-08 /pmc/articles/PMC7273260/ /pubmed/32511492 http://dx.doi.org/10.1101/2020.05.05.20083436 Text en http://creativecommons.org/licenses/by-nd/4.0/It is made available under a CC-BY-ND 4.0 International license (http://creativecommons.org/licenses/by-nd/4.0/) . |
spellingShingle | Article Golder, S Klein, Ari Z. Magge, Arjun O’Connor, Karen Cai, Haitao Weissenbacher, Davy Gonzalez-Hernandez, Graciela Extending A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter to England, UK |
title | Extending A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter to England, UK |
title_full | Extending A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter to England, UK |
title_fullStr | Extending A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter to England, UK |
title_full_unstemmed | Extending A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter to England, UK |
title_short | Extending A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter to England, UK |
title_sort | extending a chronological and geographical analysis of personal reports of covid-19 on twitter to england, uk |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273260/ https://www.ncbi.nlm.nih.gov/pubmed/32511492 http://dx.doi.org/10.1101/2020.05.05.20083436 |
work_keys_str_mv | AT golders extendingachronologicalandgeographicalanalysisofpersonalreportsofcovid19ontwittertoenglanduk AT kleinariz extendingachronologicalandgeographicalanalysisofpersonalreportsofcovid19ontwittertoenglanduk AT maggearjun extendingachronologicalandgeographicalanalysisofpersonalreportsofcovid19ontwittertoenglanduk AT oconnorkaren extendingachronologicalandgeographicalanalysisofpersonalreportsofcovid19ontwittertoenglanduk AT caihaitao extendingachronologicalandgeographicalanalysisofpersonalreportsofcovid19ontwittertoenglanduk AT weissenbacherdavy extendingachronologicalandgeographicalanalysisofpersonalreportsofcovid19ontwittertoenglanduk AT gonzalezhernandezgraciela extendingachronologicalandgeographicalanalysisofpersonalreportsofcovid19ontwittertoenglanduk |