Cargando…
Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States
BACKGROUND: The novel human coronavirus disease 2019 (COVID-19) pandemic has claimed more than 240,000 lives worldwide, causing tremendous public health, social, and economic damages. While the risk factors of COVID-19 are still under investigation, environmental factors, such as urban air pollution...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273261/ https://www.ncbi.nlm.nih.gov/pubmed/32511493 http://dx.doi.org/10.1101/2020.05.04.20090746 |
Sumario: | BACKGROUND: The novel human coronavirus disease 2019 (COVID-19) pandemic has claimed more than 240,000 lives worldwide, causing tremendous public health, social, and economic damages. While the risk factors of COVID-19 are still under investigation, environmental factors, such as urban air pollution, may play an important role in increasing population susceptibility to COVID-19 pathogenesis. METHODS: We conducted a cross-sectional nationwide study using zero-inflated negative binomial models to estimate the association between long-term (2010–2016) county-level exposures to NO(2), PM(2.5) and O(3) and county-level COVID-19 case-fatality and mortality rates in the US. We used both single and multipollutant models and controlled for spatial trends and a comprehensive set of potential confounders, including state-level test positive rate, county-level healthcare capacity, phase-of-epidemic, population mobility, sociodemographic, socioeconomic status, behavior risk factors, and meteorological factors. RESULTS: 1,027,799 COVID-19 cases and 58,489 deaths were reported in 3,122 US counties from January 22, 2020 to April 29, 2020, with an overall observed case-fatality rate of 5.8%. Spatial variations were observed for both COVID-19 death outcomes and long-term ambient air pollutant levels. County-level average NO(2) concentrations were positively associated with both COVID-19 case-fatality rate and mortality rate in single-, bi-, and tri-pollutant models (p-values<0.05). Per inter-quartile range (IQR) increase in NO(2) (4.6 ppb), COVID-19 case-fatality rate and mortality rate were associated with an increase of 7.1% (95% CI 1.2% to 13.4%) and 11.2% (95% CI 3.4% to 19.5%), respectively. We did not observe significant associations between long-term exposures to PM(2.5) or O(3) and COVID-19 death outcomes (p-values>0.05), although per IQR increase in PM(2.5) (3.4 ug/m(3)) was marginally associated with 10.8% (95% CI: −1.1% to 24.1%) increase in COVID-19 mortality rate. DISCUSSIONS AND CONCLUSIONS: Long-term exposure to NO(2), which largely arises from urban combustion sources such as traffic, may enhance susceptibility to severe COVID-19 outcomes, independent of long-term PM(2.5) and O(3) exposure. The results support targeted public health actions to protect residents from COVID-19 in heavily polluted regions with historically high NO(2) levels. Moreover, continuation of current efforts to lower traffic emissions and ambient air pollution levels may be an important component of reducing population-level risk of COVID-19 deaths. |
---|