Cargando…
Survival-Convolution Models for Predicting COVID-19 Cases and Assessing Effects of Mitigation Strategies
Countries around the globe have implemented unprecedented measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic. We aim to predict COVID-19 disease course and compare effectiveness of mitigation measures across countries to inform policy decision making. We propose a robust and parsi...
Autores principales: | Wang, Qinxia, Xie, Shanghong, Wang, Yuanjia, Zeng, Donglin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273280/ https://www.ncbi.nlm.nih.gov/pubmed/32511512 http://dx.doi.org/10.1101/2020.04.16.20067306 |
Ejemplares similares
-
Survival-Convolution Models for Predicting COVID-19 Cases and Assessing Effects of Mitigation Strategies
por: Wang, Qinxia, et al.
Publicado: (2020) -
Evaluating Effectiveness of Public Health Intervention Strategies for Mitigating COVID-19 Pandemic
por: Xie, Shanghong, et al.
Publicado: (2021) -
Evaluating effectiveness of public health intervention strategies for mitigating COVID‐19 pandemic
por: Xie, Shanghong, et al.
Publicado: (2022) -
Learning Subject-Specific Directed Acyclic Graphs With Mixed Effects Structural Equation Models From Observational Data
por: Li, Xiang, et al.
Publicado: (2018) -
Use of personalized Dynamic Treatment Regimes (DTRs) and Sequential Multiple Assignment Randomized Trials (SMARTs) in mental health studies
por: Liu, Ying, et al.
Publicado: (2014)