Cargando…
Clinical predictors of COVID-19 mortality
BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has affected over millions of individuals and caused hundreds of thousands of deaths worldwide. It can be difficult to accurately predict mortality among COVID-19 patients presenting with a spectrum of complications, hindering the prognost...
Autores principales: | Yadaw, Arjun S., Li, Yan-chak, Bose, Sonali, Iyengar, Ravi, Bunyavanich, Supinda, Pandey, Gaurav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273288/ https://www.ncbi.nlm.nih.gov/pubmed/32511520 http://dx.doi.org/10.1101/2020.05.19.20103036 |
Ejemplares similares
-
Clinical features of COVID-19 mortality: development and validation of a clinical prediction model
por: Yadaw, Arjun S, et al.
Publicado: (2020) -
Machine learning using institution-specific multi-modal electronic health records improves mortality risk prediction for cardiac surgery patients
por: Weiss, Aaron J., et al.
Publicado: (2023) -
Allergic rhinitis: the “Ghost Diagnosis” in patients with asthma
por: Egan, Maureen, et al.
Publicado: (2015) -
NeTFactor, a framework for identifying transcriptional regulators of gene expression-based biomarkers
por: Ahsen, Mehmet Eren, et al.
Publicado: (2019) -
A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data
por: Pandey, Gaurav, et al.
Publicado: (2018)