Cargando…

Antibiotic-resistant Escherichia coli isolated from urban rodents in Hanoi, Vietnam

Antimicrobial resistance (AMR) is a global public health concern for both clinical and veterinary medicine. Rodent feces are one of the major infectious sources of zoonotic pathogens including AMR bacteria. So far, there are limited studies reported focused on Escherichia coli isolated in rodent fec...

Descripción completa

Detalles Bibliográficos
Autores principales: LE HUY, Hoang, KOIZUMI, Nobuo, UNG, Trang Thi Hong, LE, Thanh Thi, NGUYEN, Hang Le Khanh, HOANG, Phuong Vu Mai, NGUYEN, Cam Nhat, KHONG, Tuan Minh, HASEBE, Futoshi, HAGA, Takeshi, LE, Mai Thi Quynh, HIRAYAMA, Kazuhiro, MIURA, Kozue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japanese Society of Veterinary Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273608/
https://www.ncbi.nlm.nih.gov/pubmed/32224554
http://dx.doi.org/10.1292/jvms.19-0697
Descripción
Sumario:Antimicrobial resistance (AMR) is a global public health concern for both clinical and veterinary medicine. Rodent feces are one of the major infectious sources of zoonotic pathogens including AMR bacteria. So far, there are limited studies reported focused on Escherichia coli isolated in rodent feces from rural and suburban areas in Vietnam. In this study, we investigated the prevalence of antimicrobial resistance in E. coli isolated from feces samples of 144 urban rodents caught in Hanoi, Vietnam. A total of 59 AMR E. coli was isolated from urban rodents of which 42 were multidrug-resistant (MDR) isolates (resistance to at least three classes of antimicrobial agents), four were extended-spectrum β-lactamase (ESBL) producing isolates and five were colistin-resistant isolates. The highest prevalence of the resistance was against ampicillin (79.7%: 47/59), followed by tetracycline (78.0%: 46/59), nalidixic acid (67.8%: 40/59), sulfamethoxazole-trimethoprim (59.3%: 35/59), chloramphenicol (45.8%: 27/59), ciprofloxacin (44.1%: 26/59), cefotaxime (30.5%: 18/59), cefodizime (23.7%: 14/59), amoxicillin-clavulanate (22.0%: 13/59), and gentamicin (22.0%: 13/59). With regard to the virulence genes associated with diarrheagenic E. coli (DEC), only aaiC gene found in one AMR isolate. In general, the use of antimicrobials does not aim to treat rodents except for companion animals. However, our findings show the carriage of AMR and MDR E. coli in urban rodents and highlight the potential risk of rodents in Hanoi acting as a reservoir of transferable MDR E. coli, including ESBL-producing, colistin-resistant E. coli, and virulence-associated with DEC.