Cargando…

Effects of climatic elements on Salmonella contamination in broiler chicken meat in Japan

The effects of climatic elements on Salmonella contamination of chicken meat were investigated. Logistic regression analysis was performed to evaluate the association between Salmonella isolation, for 240 chicken samples purchased from March 2015 to February 2017, and climatic elements, over 65 days...

Descripción completa

Detalles Bibliográficos
Autores principales: ISHIHARA, Kanako, NAKAZAWA, Chisato, NOMURA, Shizuka, ELAHI, Shaheem, YAMASHITA, Megumi, FUJIKAWA, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japanese Society of Veterinary Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273613/
https://www.ncbi.nlm.nih.gov/pubmed/32213732
http://dx.doi.org/10.1292/jvms.19-0677
Descripción
Sumario:The effects of climatic elements on Salmonella contamination of chicken meat were investigated. Logistic regression analysis was performed to evaluate the association between Salmonella isolation, for 240 chicken samples purchased from March 2015 to February 2017, and climatic elements, over 65 days of chicken rearing. Salmonella was isolated from 143 samples (59.6%), and the most dominant serovars identified were Infantis (77/240, 32.1%) and Schwarzengrund (56/240, 23.3%). Previous studies have reported S. Schwarzengrund contamination of broiler chickens only in western Japan; however, in the present study, S. Schwarzengrund was also isolated from meat produced in eastern Japan—20% (12/60) in the C prefecture to 36.4% (8/22) in the Y prefecture—suggesting that S. Schwarzengrund-contaminated areas have expanded towards eastern Japan. Air temperature showed a significant negative association with S. Schwarzengrund isolation for chicken meat produced during periods with rising temperature (spring and summer) [odds ratio (OR), 0.894 to 0.935; P<0.01]. Moreover, the risk of S. Schwarzengrund contamination of chicken meat was higher during spring (OR, 3.951; P=0.008) and winter (OR, 4.071; P=0.006) than during summer. Effects of climatic elements and differences in contamination risk across seasons were not observed for any Salmonella serovars and only S. Infantis, which could be attributed to differences in transmission patterns and vehicles among Salmonella serovars. These findings are valuable for understanding the dynamics of S. Schwarzengrund dissemination in broiler farms.