Cargando…
Explaining the Neural Network: A Case Study to Model the Incidence of Cervical Cancer
Neural networks are frequently applied to medical data. We describe how complex and imbalanced data can be modelled with simple but accurate neural networks that are transparent to the user. In the case of a data set on cervical cancer with 753 observations excluding, missing values, and 32 covariat...
Autores principales: | Lisboa, Paulo J. G., Ortega-Martorell, Sandra, Olier, Ivan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274310/ http://dx.doi.org/10.1007/978-3-030-50146-4_43 |
Ejemplares similares
-
Enhanced survival prediction using explainable artificial intelligence in heart transplantation
por: Lisboa, Paulo J. G., et al.
Publicado: (2022) -
Breast cancer patient characterisation and visualisation using deep learning and fisher information networks
por: Ortega-Martorell, Sandra, et al.
Publicado: (2022) -
Tracking Therapy Response in Glioblastoma Using 1D Convolutional Neural Networks
por: Ortega-Martorell, Sandra, et al.
Publicado: (2023) -
From raw data to data-analysis for magnetic resonance spectroscopy – the missing link: jMRUI2XML
por: Mocioiu, Victor, et al.
Publicado: (2015) -
SpectraClassifier 1.0: a user friendly, automated MRS-based classifier-development system
por: Ortega-Martorell, Sandra, et al.
Publicado: (2010)