Cargando…
Feature Reduction in Superset Learning Using Rough Sets and Evidence Theory
Supervised learning is an important branch of machine learning (ML), which requires a complete annotation (labeling) of the involved training data. This assumption, which may constitute a severe bottleneck in the practical use of ML, is relaxed in weakly supervised learning. In this ML paradigm, tra...
Autores principales: | Campagner, Andrea, Ciucci, Davide, Hüllermeier, Eyke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274316/ http://dx.doi.org/10.1007/978-3-030-50146-4_35 |
Ejemplares similares
-
Approximate Reaction Systems Based on Rough Set Theory
por: Campagner, Andrea, et al.
Publicado: (2020) -
Learning Tversky Similarity
por: Rahnama, Javad, et al.
Publicado: (2020) -
Ordinal labels in machine learning: a user-centered approach to improve data validity in medical settings
por: Seveso, Andrea, et al.
Publicado: (2020) -
Evaluate Apache superset software
por: Ohri, Elif Ebru
Publicado: (2022) -
Revitalizing the setting approach – supersettings for sustainable impact in community health promotion
por: Bloch, Paul, et al.
Publicado: (2014)