Cargando…
Which Distributions (or Families of Distributions) Best Represent Interval Uncertainty: Case of Permutation-Invariant Criteria
In many practical situations, we only know the interval containing the quantity of interest, we have no information about the probabilities of different values within this interval. In contrast to the cases when we know the distributions and can thus use Monte-Carlo simulations, processing such inte...
Autores principales: | Beer, Michael, Urenda, Julio, Kosheleva, Olga, Kreinovich, Vladik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274317/ http://dx.doi.org/10.1007/978-3-030-50146-4_6 |
Ejemplares similares
-
Why Spiking Neural Networks Are Efficient: A Theorem
por: Beer, Michael, et al.
Publicado: (2020) -
Combining interval, probabilistic, and other types of uncertainty in engineering applications
por: Pownuk, Andrew, et al.
Publicado: (2018) -
Propagation of interval and probabilistic uncertainty in cyberinfrastructure-related data processing and data fusion
por: Servin, Christian, et al.
Publicado: (2015) -
Limit Theorems as Blessing of Dimensionality: Neural-Oriented Overview
por: Kreinovich, Vladik, et al.
Publicado: (2021) -
Computing Statistics under Interval and Fuzzy Uncertainty: Applications to Computer Science and Engineering
por: Nguyen, Hung T, et al.
Publicado: (2012)