Cargando…
Acoustic Feature Selection with Fuzzy Clustering, Self Organizing Maps and Psychiatric Assessments
Acoustic features about phone calls are promising markers for prediction of bipolar disorder episodes. Smartphones enable collection of voice signal on a daily basis, and thus, the amount of data available for analysis is quickly growing. At the same time, even though the collected data are crisp, t...
Autores principales: | Kamińska, Olga, Kaczmarek-Majer, Katarzyna, Hryniewicz, Olgierd |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274340/ http://dx.doi.org/10.1007/978-3-030-50146-4_26 |
Ejemplares similares
-
Behavioral and Self-reported Data Collected From Smartphones for the Assessment of Depressive and Manic Symptoms in Patients With Bipolar Disorder: Prospective Observational Study
por: Dominiak, Monika, et al.
Publicado: (2022) -
An Efficient Brain Tumor Segmentation Method Based on Adaptive Moving Self-Organizing Map and Fuzzy K-Mean Clustering
por: Dalal, Surjeet, et al.
Publicado: (2023) -
Semi-Supervised Fuzzy Clustering with Feature Discrimination
por: Li, Longlong, et al.
Publicado: (2015) -
On MV-Algebraic Versions of the Strong Law of Large Numbers
por: Nowak, Piotr, et al.
Publicado: (2019) -
Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
por: Maji, Pradipta, et al.
Publicado: (2015)