Cargando…
Deep Conformal Prediction for Robust Models
Deep networks, like some other learning models, can associate high trust to unreliable predictions. Making these models robust and reliable is therefore essential, especially for critical decisions. This experimental paper shows that the conformal prediction approach brings a convincing solution to...
Autores principales: | Messoudi, Soundouss, Rousseau, Sylvain, Destercke, Sébastien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274351/ http://dx.doi.org/10.1007/978-3-030-50146-4_39 |
Ejemplares similares
-
Cautious Label-Wise Ranking with Constraint Satisfaction
por: Carranza-Alarcon, Yonatan-Carlos, et al.
Publicado: (2020) -
Handling Mixture Optimisation Problem Using Cautious Predictions and Belief Functions
por: Jacquin, Lucie, et al.
Publicado: (2020) -
Symbolic and quantitative approaches to reasoning with uncertainty: 13th European conference, ECSQARU 2015, Compiègne, France, July 15-17, 2015 proceedings
por: Destercke, Sébastien, et al.
Publicado: (2015) -
Approximating General Kernels by Extended Fuzzy Measures: Application to Filtering
por: Destercke, Sébastien, et al.
Publicado: (2020) -
Dealing with Inconsistent Measurements in Inverse Problems: An Approach Based on Sets and Intervals
por: Shinde, Krushna, et al.
Publicado: (2020)