Cargando…
Plant-mSubP: a computational framework for the prediction of single- and multi-target protein subcellular localization using integrated machine-learning approaches
The subcellular localization of proteins is very important for characterizing its function in a cell. Accurate prediction of the subcellular locations in computational paradigm has been an active area of interest. Most of the work has been focused on single localization prediction. Only few studies...
Autores principales: | Sahu, Sitanshu S, Loaiza, Cristian D, Kaundal, Rakesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274489/ https://www.ncbi.nlm.nih.gov/pubmed/32528639 http://dx.doi.org/10.1093/aobpla/plz068 |
Ejemplares similares
-
A reference library for assigning protein subcellular localizations by image-based machine learning
por: Schormann, Wiebke, et al.
Publicado: (2020) -
LacSubPred: predicting subtypes of Laccases, an important lignin metabolism-related enzyme class, using in silico approaches
por: Weirick, Tyler, et al.
Publicado: (2014) -
Defining the subcellular distribution and metabolic channeling of phosphatidylinositol
por: Pemberton, Joshua G., et al.
Publicado: (2020) -
Identification and characterization of plastid-type proteins from sequence-attributed features using machine learning
por: Kaundal, Rakesh, et al.
Publicado: (2013) -
High-efficacy subcellular micropatterning of proteins using fibrinogen anchors
por: Watson, Joseph L., et al.
Publicado: (2021)