Cargando…
General-Purpose Automated Machine Learning for Transportation: A Case Study of Auto-sklearn for Traffic Forecasting
Currently, there are no guidelines to determine what are the most suitable machine learning pipelines (i.e. the workflow from data preprocessing to model selection and validation) to approach Traffic Forecasting (TF) problems. Although automated machine learning (AutoML) has proved to be successful...
Autores principales: | Angarita-Zapata, Juan S., Masegosa, Antonio D., Triguero, Isaac |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274664/ http://dx.doi.org/10.1007/978-3-030-50143-3_57 |
Ejemplares similares
-
Transformers-sklearn: a toolkit for medical language understanding with transformer-based models
por: Yang, Feihong, et al.
Publicado: (2021) -
A Bibliometric Analysis and Benchmark of Machine Learning and AutoML in Crash Severity Prediction: The Case Study of Three Colombian Cities
por: Angarita-Zapata, Juan S., et al.
Publicado: (2021) -
Machine Learning Model Application and Comparison in Actuated Traffic Signal Forecasting
por: Xie, Feng, et al.
Publicado: (2023) -
Evaluating the effectiveness of machine learning techniques in forecasting the severity of traffic accidents
por: Obasi, Izuchukwu Chukwuma, et al.
Publicado: (2023) -
Dynamic Learning Framework for Smooth-Aided Machine-Learning-Based Backbone Traffic Forecasts
por: Hassan, Mohamed Khalafalla, et al.
Publicado: (2022)