Cargando…
On Solutions of Marginal Problem in Evidence Theory
Recently introduced marginal problem – which addresses the question of whether or not a common extension exists for a given set of marginal basic assignments – in the framework of evidence theory is recalled. Sets of solutions are studied in more detail and it is shown, by a simple example, that the...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274669/ http://dx.doi.org/10.1007/978-3-030-50143-3_29 |
Sumario: | Recently introduced marginal problem – which addresses the question of whether or not a common extension exists for a given set of marginal basic assignments – in the framework of evidence theory is recalled. Sets of solutions are studied in more detail and it is shown, by a simple example, that their structure is much more complicated (i.e. the number of extreme vertices of the convex set of solutions is substantially greater) than that in an analogous problem in probabilistic framework. The concept of product extension of two basic assignments is generalized (via operator of composition) to a finite sequence of basic assignments. This makes possible not only to express the extension, if it exists, in a closed form, but also enables us to find the sufficient condition for the existence of an extension of evidential marginal problem. Presented approach is illustrated by a simple example. |
---|