Cargando…
Possibilistic Bounds for Granular Counting
Uncertain data are observations that cannot be uniquely mapped to a referent. In the case of uncertainty due to incompleteness, possibility theory can be used as an appropriate model for processing such data. In particular, granular counting is a way to count data in presence of uncertainty represen...
Autor principal: | Mencar, Corrado |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274672/ http://dx.doi.org/10.1007/978-3-030-50153-2_3 |
Ejemplares similares
-
GrCount: Counting method for uncertain data
por: Mencar, Corrado, et al.
Publicado: (2019) -
Converting Possibilistic Networks by Using Uncertain Gates
por: Petiot, Guillaume
Publicado: (2020) -
A heuristic approach to possibilistic clustering algorithms and applications
por: Viattchenin, Dmitri A
Publicado: (2013) -
Possibilistic Estimation of Distributions to Leverage Sparse Data in Machine Learning
por: Tettamanzi, Andrea G. B., et al.
Publicado: (2020) -
A possibilistic framework for constraint-based metabolic flux analysis
por: Llaneras, Francisco, et al.
Publicado: (2009)