Cargando…
Predicting S&P500 Monthly Direction with Informed Machine Learning
We propose a systematic framework based on a dynamic functional causal graph in order to capture complexity and uncertainty on the financial markets, and then to predict the monthly direction of the S&P500 index. Our results highlight the relevance of (i) using the hierarchical causal graph mode...
Autores principales: | Djoumbissie, David Romain, Langlais, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274676/ http://dx.doi.org/10.1007/978-3-030-50153-2_41 |
Ejemplares similares
-
500 tips for open and flexible learning /
por: Race, Philip
Publicado: (1998) -
Adaptation of the Main Peripheral Artery and Vein to Long Term Confinement (MARS 500)
por: Arbeille, Philippe, et al.
Publicado: (2014) -
500 jours pour Mars: entretien avec romain charles
por: Tellier, Étienne, et al.
Publicado: (2016) -
Machine Learning Approaches to Predict 6-Month Mortality Among Patients With Cancer
por: Parikh, Ravi B., et al.
Publicado: (2019) -
Argus 500
Publicado: (2016)