Cargando…
Learning Tversky Similarity
In this paper, we advocate Tversky’s ratio model as an appropriate basis for computational approaches to semantic similarity, that is, the comparison of objects such as images in a semantically meaningful way. We consider the problem of learning Tversky similarity measures from suitable training dat...
Autores principales: | Rahnama, Javad, Hüllermeier, Eyke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274714/ http://dx.doi.org/10.1007/978-3-030-50143-3_21 |
Ejemplares similares
-
Revisiting Tversky's diagnosticity principle
por: Evers, Ellen R. K., et al.
Publicado: (2014) -
Extended graph-based models for enhanced similarity retrieval in Cavbase
por: Krotzky, Timo, et al.
Publicado: (2013) -
MetMaxStruct: A Tversky-Similarity-Based Strategy for Analysing the (Sub)Structural Similarities of Drugs and Endogenous Metabolites
por: O'Hagan, Steve, et al.
Publicado: (2016) -
From the Similarity Analysis of Protein Cavities to the Functional Classification of Protein Families Using Cavbase
por: Kuhn, Daniel, et al.
Publicado: (2006) -
Feature Reduction in Superset Learning Using Rough Sets and Evidence Theory
por: Campagner, Andrea, et al.
Publicado: (2020)