Cargando…
Intelligent Detection of Information Outliers Using Linguistic Summaries with Non-monotonic Quantifiers
In the processing of imprecise information, principally in big data analysis, it is very advantageous to transform numerical values into the standard form of linguistic statements. This paper deals with a novel method of outlier detection using linguistic summaries. Particular attention is devoted t...
Autores principales: | Duraj, Agnieszka, Szczepaniak, Piotr S., Chomatek, Lukasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274735/ http://dx.doi.org/10.1007/978-3-030-50153-2_58 |
Ejemplares similares
-
Nested Binary Classifier as an Outlier Detection Method in Human Activity Recognition Systems
por: Duraj, Agnieszka, et al.
Publicado: (2023) -
Monotone Quantifiers Emerge via Iterated Learning
por: Carcassi, Fausto, et al.
Publicado: (2021) -
Qualitative Data Clustering to Detect Outliers
por: Nowak-Brzezińska, Agnieszka, et al.
Publicado: (2021) -
Ordered, Random, Monotonic and Non-Monotonic Digital Nanodot Gradients
por: Ongo, Grant, et al.
Publicado: (2014) -
Query-Based Outlier Detection in Heterogeneous Information Networks
por: Kuck, Jonathan, et al.
Publicado: (2015)