Cargando…

Vascular disrupting agent induced aggregation of gold nanoparticles for photothermally enhanced tumor vascular disruption

Although vascular disrupting agents (VDAs) have been extensively implemented in current clinical tumor therapy, the notable adverse events caused by long-term dosing severely limit the therapeutic efficacy. To improve this therapy, we report a strategy for VDA-induced aggregation of gold nanoparticl...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Sheng, Zheng, Di-Wei, Zhang, Cheng, Huang, Qian-Xiao, Cheng, Si-Xue, Zhang, Xian-Zheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274768/
https://www.ncbi.nlm.nih.gov/pubmed/32548273
http://dx.doi.org/10.1126/sciadv.abb0020
Descripción
Sumario:Although vascular disrupting agents (VDAs) have been extensively implemented in current clinical tumor therapy, the notable adverse events caused by long-term dosing severely limit the therapeutic efficacy. To improve this therapy, we report a strategy for VDA-induced aggregation of gold nanoparticles to further destroy tumor vascular by photothermal effect. This strategy could effectively disrupt tumor vascular and cut off the nutrition supply after just one treatment. In the murine tumor model, this strategy results in notable tumor growth inhibition and gives rise to a 92.7% suppression of tumor growth. Besides, enhanced vascular damage could also prevent cancer cells from distant metastasis. Moreover, compared with clinical therapies, this strategy still exhibits preferable tumor suppression and metastasis inhibition ability. These results indicate that this strategy has great potential in tumor treatment and could effectively enhance tumor vascular damage and avoid the side effects caused by frequent administration.