Cargando…
Approximating General Kernels by Extended Fuzzy Measures: Application to Filtering
Convolution kernels are essential tools in signal processing: they are used to filter noisy signal, interpolate discrete signals, [Formula: see text]. However, in a given application, it is often hard to select an optimal shape of the kernel. This is why, in practice, it may be useful to possess eff...
Autores principales: | Destercke, Sébastien, Rico, Agnès, Strauss, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274772/ http://dx.doi.org/10.1007/978-3-030-50143-3_9 |
Ejemplares similares
-
Ranking Support Vector Machine with Kernel Approximation
por: Chen, Kai, et al.
Publicado: (2017) -
Approximate kernel reconstruction for time-varying networks
por: Ditzler, Gregory, et al.
Publicado: (2019) -
Approximation of velocity-dependent potentials by separable kernels
por: Targonski, G
Publicado: (1959) -
Blended kernel approximation in the H-matrix techniques
por: Hackbusch, W, et al.
Publicado: (2000) -
A Novel Method of the Generalized Interval-Valued Fuzzy Rough Approximation Operators
por: Xue, Tianyu, et al.
Publicado: (2014)