Cargando…

A big-data approach to understanding metabolic rate and response to obesity in laboratory mice

Maintaining a healthy body weight requires an exquisite balance between energy intake and energy expenditure. To understand the genetic and environmental factors that contribute to the regulation of body weight, an important first step is to establish the normal range of metabolic values and primary...

Descripción completa

Detalles Bibliográficos
Autores principales: Corrigan, June K, Ramachandran, Deepti, He, Yuchen, Palmer, Colin J, Jurczak, Michael J, Chen, Rui, Li, Bingshan, Friedline, Randall H, Kim, Jason K, Ramsey, Jon J, Lantier, Louise, McGuinness, Owen P, Banks, Alexander S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274785/
https://www.ncbi.nlm.nih.gov/pubmed/32356724
http://dx.doi.org/10.7554/eLife.53560
_version_ 1783542660553768960
author Corrigan, June K
Ramachandran, Deepti
He, Yuchen
Palmer, Colin J
Jurczak, Michael J
Chen, Rui
Li, Bingshan
Friedline, Randall H
Kim, Jason K
Ramsey, Jon J
Lantier, Louise
McGuinness, Owen P
Banks, Alexander S
author_facet Corrigan, June K
Ramachandran, Deepti
He, Yuchen
Palmer, Colin J
Jurczak, Michael J
Chen, Rui
Li, Bingshan
Friedline, Randall H
Kim, Jason K
Ramsey, Jon J
Lantier, Louise
McGuinness, Owen P
Banks, Alexander S
author_sort Corrigan, June K
collection PubMed
description Maintaining a healthy body weight requires an exquisite balance between energy intake and energy expenditure. To understand the genetic and environmental factors that contribute to the regulation of body weight, an important first step is to establish the normal range of metabolic values and primary sources contributing to variability. Energy metabolism is measured by powerful and sensitive indirect calorimetry devices. Analysis of nearly 10,000 wild-type mice from two large-scale experiments revealed that the largest variation in energy expenditure is due to body composition, ambient temperature, and institutional site of experimentation. We also analyze variation in 2329 knockout strains and establish a reference for the magnitude of metabolic changes. Based on these findings, we provide suggestions for how best to design and conduct energy balance experiments in rodents. These recommendations will move us closer to the goal of a centralized physiological repository to foster transparency, rigor and reproducibility in metabolic physiology experimentation.
format Online
Article
Text
id pubmed-7274785
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-72747852020-06-09 A big-data approach to understanding metabolic rate and response to obesity in laboratory mice Corrigan, June K Ramachandran, Deepti He, Yuchen Palmer, Colin J Jurczak, Michael J Chen, Rui Li, Bingshan Friedline, Randall H Kim, Jason K Ramsey, Jon J Lantier, Louise McGuinness, Owen P Banks, Alexander S eLife Human Biology and Medicine Maintaining a healthy body weight requires an exquisite balance between energy intake and energy expenditure. To understand the genetic and environmental factors that contribute to the regulation of body weight, an important first step is to establish the normal range of metabolic values and primary sources contributing to variability. Energy metabolism is measured by powerful and sensitive indirect calorimetry devices. Analysis of nearly 10,000 wild-type mice from two large-scale experiments revealed that the largest variation in energy expenditure is due to body composition, ambient temperature, and institutional site of experimentation. We also analyze variation in 2329 knockout strains and establish a reference for the magnitude of metabolic changes. Based on these findings, we provide suggestions for how best to design and conduct energy balance experiments in rodents. These recommendations will move us closer to the goal of a centralized physiological repository to foster transparency, rigor and reproducibility in metabolic physiology experimentation. eLife Sciences Publications, Ltd 2020-05-01 /pmc/articles/PMC7274785/ /pubmed/32356724 http://dx.doi.org/10.7554/eLife.53560 Text en © 2020, Corrigan et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Human Biology and Medicine
Corrigan, June K
Ramachandran, Deepti
He, Yuchen
Palmer, Colin J
Jurczak, Michael J
Chen, Rui
Li, Bingshan
Friedline, Randall H
Kim, Jason K
Ramsey, Jon J
Lantier, Louise
McGuinness, Owen P
Banks, Alexander S
A big-data approach to understanding metabolic rate and response to obesity in laboratory mice
title A big-data approach to understanding metabolic rate and response to obesity in laboratory mice
title_full A big-data approach to understanding metabolic rate and response to obesity in laboratory mice
title_fullStr A big-data approach to understanding metabolic rate and response to obesity in laboratory mice
title_full_unstemmed A big-data approach to understanding metabolic rate and response to obesity in laboratory mice
title_short A big-data approach to understanding metabolic rate and response to obesity in laboratory mice
title_sort big-data approach to understanding metabolic rate and response to obesity in laboratory mice
topic Human Biology and Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274785/
https://www.ncbi.nlm.nih.gov/pubmed/32356724
http://dx.doi.org/10.7554/eLife.53560
work_keys_str_mv AT corriganjunek abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT ramachandrandeepti abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT heyuchen abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT palmercolinj abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT jurczakmichaelj abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT chenrui abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT libingshan abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT friedlinerandallh abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT kimjasonk abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT ramseyjonj abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT lantierlouise abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT mcguinnessowenp abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT banksalexanders abigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT corriganjunek bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT ramachandrandeepti bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT heyuchen bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT palmercolinj bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT jurczakmichaelj bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT chenrui bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT libingshan bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT friedlinerandallh bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT kimjasonk bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT ramseyjonj bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT lantierlouise bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT mcguinnessowenp bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice
AT banksalexanders bigdataapproachtounderstandingmetabolicrateandresponsetoobesityinlaboratorymice