Cargando…

DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability

The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained el...

Descripción completa

Detalles Bibliográficos
Autores principales: Kramm, Kevin, Schröder, Tim, Gouge, Jerome, Vera, Andrés Manuel, Gupta, Kapil, Heiss, Florian B., Liedl, Tim, Engel, Christoph, Berger, Imre, Vannini, Alessandro, Tinnefeld, Philip, Grohmann, Dina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275037/
https://www.ncbi.nlm.nih.gov/pubmed/32504003
http://dx.doi.org/10.1038/s41467-020-16702-x
_version_ 1783542700972179456
author Kramm, Kevin
Schröder, Tim
Gouge, Jerome
Vera, Andrés Manuel
Gupta, Kapil
Heiss, Florian B.
Liedl, Tim
Engel, Christoph
Berger, Imre
Vannini, Alessandro
Tinnefeld, Philip
Grohmann, Dina
author_facet Kramm, Kevin
Schröder, Tim
Gouge, Jerome
Vera, Andrés Manuel
Gupta, Kapil
Heiss, Florian B.
Liedl, Tim
Engel, Christoph
Berger, Imre
Vannini, Alessandro
Tinnefeld, Philip
Grohmann, Dina
author_sort Kramm, Kevin
collection PubMed
description The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III.
format Online
Article
Text
id pubmed-7275037
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-72750372020-06-16 DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability Kramm, Kevin Schröder, Tim Gouge, Jerome Vera, Andrés Manuel Gupta, Kapil Heiss, Florian B. Liedl, Tim Engel, Christoph Berger, Imre Vannini, Alessandro Tinnefeld, Philip Grohmann, Dina Nat Commun Article The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III. Nature Publishing Group UK 2020-06-05 /pmc/articles/PMC7275037/ /pubmed/32504003 http://dx.doi.org/10.1038/s41467-020-16702-x Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Kramm, Kevin
Schröder, Tim
Gouge, Jerome
Vera, Andrés Manuel
Gupta, Kapil
Heiss, Florian B.
Liedl, Tim
Engel, Christoph
Berger, Imre
Vannini, Alessandro
Tinnefeld, Philip
Grohmann, Dina
DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability
title DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability
title_full DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability
title_fullStr DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability
title_full_unstemmed DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability
title_short DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability
title_sort dna origami-based single-molecule force spectroscopy elucidates rna polymerase iii pre-initiation complex stability
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275037/
https://www.ncbi.nlm.nih.gov/pubmed/32504003
http://dx.doi.org/10.1038/s41467-020-16702-x
work_keys_str_mv AT krammkevin dnaorigamibasedsinglemoleculeforcespectroscopyelucidatesrnapolymeraseiiipreinitiationcomplexstability
AT schrodertim dnaorigamibasedsinglemoleculeforcespectroscopyelucidatesrnapolymeraseiiipreinitiationcomplexstability
AT gougejerome dnaorigamibasedsinglemoleculeforcespectroscopyelucidatesrnapolymeraseiiipreinitiationcomplexstability
AT veraandresmanuel dnaorigamibasedsinglemoleculeforcespectroscopyelucidatesrnapolymeraseiiipreinitiationcomplexstability
AT guptakapil dnaorigamibasedsinglemoleculeforcespectroscopyelucidatesrnapolymeraseiiipreinitiationcomplexstability
AT heissflorianb dnaorigamibasedsinglemoleculeforcespectroscopyelucidatesrnapolymeraseiiipreinitiationcomplexstability
AT liedltim dnaorigamibasedsinglemoleculeforcespectroscopyelucidatesrnapolymeraseiiipreinitiationcomplexstability
AT engelchristoph dnaorigamibasedsinglemoleculeforcespectroscopyelucidatesrnapolymeraseiiipreinitiationcomplexstability
AT bergerimre dnaorigamibasedsinglemoleculeforcespectroscopyelucidatesrnapolymeraseiiipreinitiationcomplexstability
AT vanninialessandro dnaorigamibasedsinglemoleculeforcespectroscopyelucidatesrnapolymeraseiiipreinitiationcomplexstability
AT tinnefeldphilip dnaorigamibasedsinglemoleculeforcespectroscopyelucidatesrnapolymeraseiiipreinitiationcomplexstability
AT grohmanndina dnaorigamibasedsinglemoleculeforcespectroscopyelucidatesrnapolymeraseiiipreinitiationcomplexstability