Cargando…

An evolutionarily conserved motif is required for Plasmodesmata-located protein 5 to regulate cell-to-cell movement

Numerous cell surface receptors and receptor-like proteins (RLPs) undergo activation or deactivation via a transmembrane domain (TMD). A subset of plant RLPs distinctively localizes to the plasma membrane-lined pores called plasmodesmata. Those RLPs include the Arabidopsis thaliana Plasmodesmata-loc...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xu, Robles Luna, Gabriel, Arighi, Cecilia Noemi, Lee, Jung-Youn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275062/
https://www.ncbi.nlm.nih.gov/pubmed/32504045
http://dx.doi.org/10.1038/s42003-020-1007-0
Descripción
Sumario:Numerous cell surface receptors and receptor-like proteins (RLPs) undergo activation or deactivation via a transmembrane domain (TMD). A subset of plant RLPs distinctively localizes to the plasma membrane-lined pores called plasmodesmata. Those RLPs include the Arabidopsis thaliana Plasmodesmata-located protein (PDLP) 5, which is well known for its vital function regulating plasmodesmal gating and molecular movement between cells. In this study, we report that the TMD, although not a determining factor for the plasmodesmal targeting, serves essential roles for the PDLP5 function. In addition to its role for membrane anchoring, the TMD mediates PDLP5 self-interaction and carries an evolutionarily conserved motif that is essential for PDLP5 to regulate cell-to-cell movement. Computational modeling-based analyses suggest that PDLP TMDs have high propensities to dimerize. We discuss how a specific mode(s) of TMD dimerization might serve as a common mechanism for PDLP5 and other PDLP members to regulate cell-to-cell movement.