Cargando…
Robust dynamic community detection with applications to human brain functional networks
While current technology permits inference of dynamic brain networks over long time periods at high temporal resolution, the detailed structure of dynamic network communities during human seizures remains poorly understood. We introduce a new methodology that addresses critical aspects unique to the...
Autores principales: | Martinet, L.-E., Kramer, M. A., Viles, W., Perkins, L. N., Spencer, E., Chu, C. J., Cash, S. S., Kolaczyk, E. D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275079/ https://www.ncbi.nlm.nih.gov/pubmed/32503997 http://dx.doi.org/10.1038/s41467-020-16285-7 |
Ejemplares similares
-
Functional networks and dynamics in human seizure activity
por: Kramer, Mark A, et al.
Publicado: (2011) -
Distinguishing between different percolation regimes in noisy dynamic networks with an application to epileptic seizures
por: Zhu, Xiaojing, et al.
Publicado: (2023) -
Human seizures couple across spatial scales through travelling wave dynamics
por: Martinet, L-E, et al.
Publicado: (2017) -
Robust dynamics in minimal hybrid models of genetic networks
por: Perkins, Theodore J., et al.
Publicado: (2010) -
Dynamical detection of network communities
por: Quiles, Marcos G., et al.
Publicado: (2016)