Cargando…
Comparative analysis of microbial community structure between healthy and Aeromonas veronii-infected Yangtze finless porpoise
BACKGROUND: The gut microbiota is a complex ecosystem, which is essential for the metabolism, health and immunity of host. Many diseases have been shown to be closely related to the alteration of intestinal flora. Aeromonas veronii as a conditioned pathogen can cause disease in Yangtze finless porpo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275351/ https://www.ncbi.nlm.nih.gov/pubmed/32503532 http://dx.doi.org/10.1186/s12934-020-01383-4 |
Sumario: | BACKGROUND: The gut microbiota is a complex ecosystem, which is essential for the metabolism, health and immunity of host. Many diseases have been shown to be closely related to the alteration of intestinal flora. Aeromonas veronii as a conditioned pathogen can cause disease in Yangtze finless porpoise through intestinal infections. However, it is not clear whether the disease caused by Aeromonas veronii is related to changes of intestinal flora. In the current study, the diversity and composition of gut microbiota in the healthy and Aeromonas veronii-infected Yangtze finless porpoise were evaluated by high-throughput sequencing to further investigate the potential association between intestinal flora alteration and pathogen invasion. RESULTS: A total of 127,3276 high-quality sequences were achieved and 2465 operational taxonomic units (OTUs) were in common among all samples. The results of alpha diversity showed that there was no obvious difference in richness and diversity between healthy and Aeromonas veronii-infected Yangtze finless porpoise. Firmicutes, Bacteroidetes and Proteobacteria were the most dominant phyla in all samples. In addition, the healthy Yangtze finless porpoise exhibited higher abundance of Firmicutes and Fusobacteria than Aeromonas veronii-infected Yangtze finless porpoise, while, the level of Proteobacteria was decreased. At the genus level, Paeniclostridium and Paraclostridium were the predominant bacteria genera in the CK (healthy Yangtze finless porpoise) group. In the DIS (Aeromonas veronii-infected Yangtze finless porpoise) group, Lactobacillus and unidentified_Enterobacteriaceae were the dominant bacteria genera and the proportion of Paeniclostridium, Paraclostridium, Terrisporobacter, Cetobacterium, Candidatus Arthromitus, Terrabacter and Dechloromonas were reduced. CONCLUSIONS: In conclusion, our results showed that Aeromonas veronii infection can alter the gut microbiota of the Yangtze finless porpoise by affecting the number of harmful bacteria and beneficial bacteria. |
---|