Cargando…
A prognostic nomogram integrating novel biomarkers identified by machine learning for cervical squamous cell carcinoma
BACKGROUND: Cervical cancer (CC) represents the fourth most frequently diagnosed malignancy affecting women all over the world. However, effective prognostic biomarkers are still limited for accurately identifying high-risk patients. Here, we provided a combination machine learning algorithm-based s...
Autores principales: | Li, Yimin, Lu, Shun, Lan, Mei, Peng, Xinhao, Zhang, Zijian, Lang, Jinyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275455/ https://www.ncbi.nlm.nih.gov/pubmed/32503630 http://dx.doi.org/10.1186/s12967-020-02387-9 |
Ejemplares similares
-
Identification of immune subtypes of cervical squamous cell carcinoma predicting prognosis and immunotherapy responses
por: Li, Yimin, et al.
Publicado: (2021) -
Prognostic biomarkers of cervical squamous cell carcinoma identified via plasma metabolomics
por: Zhou, Huihui, et al.
Publicado: (2019) -
Nomogram to Predict Radiation Enteritis in Cervical Squamous Cell Carcinoma
por: Wang, Jinyun, et al.
Publicado: (2022) -
CESCProg: a compact prognostic model and nomogram for cervical cancer based on miRNA biomarkers
por: Muthamilselvan, Sangeetha, et al.
Publicado: (2023) -
Prognostic Nomograms Predicting Survival in Patients With Locally Advanced Cervical Squamous Cell Carcinoma: The First Nomogram Compared With Revised FIGO 2018 Staging System
por: Yang, Xi, et al.
Publicado: (2020)