Cargando…
Novel Bi-allelic PDE6C Variant Leads to Congenital Achromatopsia
BACKGROUND: The clinical phenotyping of patients with achromatopsia harboring variants in PDE6C has poorly been described in the literature. PDE6C encodes the catalytic subunit of the cone phosphodiesterase, which hydrolyzes the cGMP that proceeds with the hyperpolarization of photoreceptor cell mem...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pasteur Institute of Iran
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275818/ https://www.ncbi.nlm.nih.gov/pubmed/32306724 http://dx.doi.org/10.29252/ibj.24.4.257 |
_version_ | 1783542853420449792 |
---|---|
author | Bushehri, Ata Zare-Abdollahi, Davood Hashemian, Hesam Safavizadeh, Ladan Effati, Jalil Khorram Khorshid, Hamid Reza |
author_facet | Bushehri, Ata Zare-Abdollahi, Davood Hashemian, Hesam Safavizadeh, Ladan Effati, Jalil Khorram Khorshid, Hamid Reza |
author_sort | Bushehri, Ata |
collection | PubMed |
description | BACKGROUND: The clinical phenotyping of patients with achromatopsia harboring variants in PDE6C has poorly been described in the literature. PDE6C encodes the catalytic subunit of the cone phosphodiesterase, which hydrolyzes the cGMP that proceeds with the hyperpolarization of photoreceptor cell membranes, as the final step of the phototransduction cascade. METHODS: In the current study, two patients from a consanguineous family underwent full ophthalmologic examination and molecular investigations including WES. The impact of the variant on the functionality of the protein has been analyzed using in silico molecular modeling. RESULTS: The patients identified with achromatopsia segregated a homozygous missense variant (c.C1775A:p.A592D) in PDE6C gene located on chromosome 10q23. Molecular modeling demonstrated that the variant would cause a protein conformational change and result in reduced phosphodiesterase activity. CONCLUSION: Our data extended the phenotypic spectrum of retinal disorders caused by PDE6C variants and provided new clinical and genetic information on achromatopsia. |
format | Online Article Text |
id | pubmed-7275818 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Pasteur Institute of Iran |
record_format | MEDLINE/PubMed |
spelling | pubmed-72758182020-07-01 Novel Bi-allelic PDE6C Variant Leads to Congenital Achromatopsia Bushehri, Ata Zare-Abdollahi, Davood Hashemian, Hesam Safavizadeh, Ladan Effati, Jalil Khorram Khorshid, Hamid Reza Iran Biomed J Case Report BACKGROUND: The clinical phenotyping of patients with achromatopsia harboring variants in PDE6C has poorly been described in the literature. PDE6C encodes the catalytic subunit of the cone phosphodiesterase, which hydrolyzes the cGMP that proceeds with the hyperpolarization of photoreceptor cell membranes, as the final step of the phototransduction cascade. METHODS: In the current study, two patients from a consanguineous family underwent full ophthalmologic examination and molecular investigations including WES. The impact of the variant on the functionality of the protein has been analyzed using in silico molecular modeling. RESULTS: The patients identified with achromatopsia segregated a homozygous missense variant (c.C1775A:p.A592D) in PDE6C gene located on chromosome 10q23. Molecular modeling demonstrated that the variant would cause a protein conformational change and result in reduced phosphodiesterase activity. CONCLUSION: Our data extended the phenotypic spectrum of retinal disorders caused by PDE6C variants and provided new clinical and genetic information on achromatopsia. Pasteur Institute of Iran 2020-07 2019-12-28 /pmc/articles/PMC7275818/ /pubmed/32306724 http://dx.doi.org/10.29252/ibj.24.4.257 Text en This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Case Report Bushehri, Ata Zare-Abdollahi, Davood Hashemian, Hesam Safavizadeh, Ladan Effati, Jalil Khorram Khorshid, Hamid Reza Novel Bi-allelic PDE6C Variant Leads to Congenital Achromatopsia |
title | Novel Bi-allelic PDE6C Variant Leads to Congenital Achromatopsia |
title_full | Novel Bi-allelic PDE6C Variant Leads to Congenital Achromatopsia |
title_fullStr | Novel Bi-allelic PDE6C Variant Leads to Congenital Achromatopsia |
title_full_unstemmed | Novel Bi-allelic PDE6C Variant Leads to Congenital Achromatopsia |
title_short | Novel Bi-allelic PDE6C Variant Leads to Congenital Achromatopsia |
title_sort | novel bi-allelic pde6c variant leads to congenital achromatopsia |
topic | Case Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275818/ https://www.ncbi.nlm.nih.gov/pubmed/32306724 http://dx.doi.org/10.29252/ibj.24.4.257 |
work_keys_str_mv | AT bushehriata novelbiallelicpde6cvariantleadstocongenitalachromatopsia AT zareabdollahidavood novelbiallelicpde6cvariantleadstocongenitalachromatopsia AT hashemianhesam novelbiallelicpde6cvariantleadstocongenitalachromatopsia AT safavizadehladan novelbiallelicpde6cvariantleadstocongenitalachromatopsia AT effatijalil novelbiallelicpde6cvariantleadstocongenitalachromatopsia AT khorramkhorshidhamidreza novelbiallelicpde6cvariantleadstocongenitalachromatopsia |