Cargando…
A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter
The rapidly evolving outbreak of COVID-19 presents challenges for actively monitoring its spread. In this study, we assessed a social media mining approach for automatically analyzing the chronological and geographical distribution of users in the United States reporting personal information related...
Autores principales: | Klein, Ari Z., Magge, Arjun, O’Connor, Karen M.S., Cai, Haitao, Weissenbacher, Davy, Gonzalez-Hernandez, Graciela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276035/ https://www.ncbi.nlm.nih.gov/pubmed/32511608 http://dx.doi.org/10.1101/2020.04.19.20069948 |
Ejemplares similares
-
Extending A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter to England, UK
por: Golder, S, et al.
Publicado: (2020) -
A chronological and geographical analysis of personal reports of COVID-19 on
Twitter from the UK
por: Golder, Su, et al.
Publicado: (2022) -
Toward Using Twitter for Tracking COVID-19: A Natural Language Processing Pipeline and Exploratory Data Set
por: Klein, Ari Z, et al.
Publicado: (2021) -
Automatically Identifying Twitter Users for Interventions to Support Dementia Family Caregivers: Annotated Data Set and Benchmark Classification Models
por: Klein, Ari Z, et al.
Publicado: (2022) -
Deep neural networks ensemble for detecting medication mentions in tweets
por: Weissenbacher, Davy, et al.
Publicado: (2019)