Cargando…
Artificial intelligence and convolution neural networks assessing mammographic images: a narrative literature review
Studies have shown that the use of artificial intelligence can reduce errors in medical image assessment. The diagnosis of breast cancer is an essential task; however, diagnosis can include ‘detection’ and ‘interpretation’ errors. Studies to reduce these errors have shown the feasibility of using co...
Autores principales: | Wong, Dennis Jay, Gandomkar, Ziba, Wu, Wan‐Jing, Zhang, Guijing, Gao, Wushuang, He, Xiaoying, Wang, Yunuo, Reed, Warren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276180/ https://www.ncbi.nlm.nih.gov/pubmed/32134206 http://dx.doi.org/10.1002/jmrs.385 |
Ejemplares similares
-
Artificial Intelligence in medical imaging practice: looking to the future
por: Lewis, Sarah J, et al.
Publicado: (2019) -
Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review
por: Gastounioti, Aimilia, et al.
Publicado: (2022) -
Automated Lung Cancer Detection Using Artificial Intelligence (AI) Deep Convolutional Neural Networks: A Narrative Literature Review
por: Sathyakumar, Kaviya, et al.
Publicado: (2020) -
Using Occlusion-Based Saliency Maps to Explain an Artificial Intelligence Tool in Lung Cancer Screening: Agreement Between Radiologists, Labels, and Visual Prompts
por: Gandomkar, Ziba, et al.
Publicado: (2022) -
Convolutional Neural Network Technology in Endoscopic Imaging: Artificial Intelligence for Endoscopy
por: Choi, Joonmyeong, et al.
Publicado: (2020)