Cargando…
DroidAutoML: A Microservice Architecture to Automate the Evaluation of Android Machine Learning Detection Systems
The mobile ecosystem is witnessing an unprecedented increase in the number of malware in the wild. To fight this threat, actors from both research and industry are constantly innovating to bring concrete solutions to improve security and malware protection. Traditional solutions such as signature-ba...
Autores principales: | Bromberg, Yérom-David, Gitzinger, Louison |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276263/ http://dx.doi.org/10.1007/978-3-030-50323-9_10 |
Ejemplares similares
-
FG-Droid: Grouping based feature size reduction for Android malware detection
por: Arslan, Recep Sinan
Publicado: (2022) -
Hierarchical automated machine learning (AutoML) for advanced unconventional reservoir characterization
por: Mubarak, Yousef, et al.
Publicado: (2023) -
ABCanDroid: A Cloud Integrated Android App for Noninvasive Early Breast Cancer Detection Using Transfer Learning
por: Chowdhury, Deepraj, et al.
Publicado: (2022) -
Hands-on automated machine learning: a beginner's guide to building automated machine learning systems using AutoML and Python
por: Das, Sibanjan, et al.
Publicado: (2018) -
AutoML-ID: automated machine learning model for intrusion detection using wireless sensor network
por: Singh, Abhilash, et al.
Publicado: (2022)