Cargando…

Quantifying genetic effects on disease mediated by assayed gene expression levels

Disease variants identified by genome-wide association studies (GWAS) tend to overlap with expression quantitative trait loci (eQTLs), but it remains unclear whether this overlap is driven by gene expression levels mediating genetic effects on disease. Here we introduce a new method, mediated expres...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Douglas W., O’Connor, Luke J., Price, Alkes L., Gusev, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276299/
https://www.ncbi.nlm.nih.gov/pubmed/32424349
http://dx.doi.org/10.1038/s41588-020-0625-2
Descripción
Sumario:Disease variants identified by genome-wide association studies (GWAS) tend to overlap with expression quantitative trait loci (eQTLs), but it remains unclear whether this overlap is driven by gene expression levels mediating genetic effects on disease. Here we introduce a new method, mediated expression score regression (MESC), to estimate disease heritability mediated by the cis-genetic component of gene expression levels. We applied MESC to GWAS summary statistics for 42 traits (average N = 323K) and cis-eQTL summary statistics for 48 tissues from the Genotype-Tissue Expression (GTEx) consortium. Averaging across traits, only 11±2% of heritability was mediated by assayed gene expression levels. Expression-mediated heritability was enriched in genes with evidence of selective constraint and genes with disease-appropriate annotations. Our results demonstrate that assayed bulk-tissue eQTLs, though disease relevant, cannot explain the majority of disease heritability.