Cargando…

Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells

Studying posttranslational modifications classically relies on experimental strategies that oversimplify the complex biosynthetic machineries of living cells. Protein glycosylation contributes to essential biological processes, but correlating glycan structure, underlying protein, and disease-releva...

Descripción completa

Detalles Bibliográficos
Autores principales: Schumann, Benjamin, Malaker, Stacy Alyse, Wisnovsky, Simon Peter, Debets, Marjoke Froukje, Agbay, Anthony John, Fernandez, Daniel, Wagner, Lauren Jan Sarbo, Lin, Liang, Li, Zhen, Choi, Junwon, Fox, Douglas Michael, Peh, Jessie, Gray, Melissa Anne, Pedram, Kayvon, Kohler, Jennifer Jean, Mrksich, Milan, Bertozzi, Carolyn Ruth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276986/
https://www.ncbi.nlm.nih.gov/pubmed/32325029
http://dx.doi.org/10.1016/j.molcel.2020.03.030
_version_ 1783543029084192768
author Schumann, Benjamin
Malaker, Stacy Alyse
Wisnovsky, Simon Peter
Debets, Marjoke Froukje
Agbay, Anthony John
Fernandez, Daniel
Wagner, Lauren Jan Sarbo
Lin, Liang
Li, Zhen
Choi, Junwon
Fox, Douglas Michael
Peh, Jessie
Gray, Melissa Anne
Pedram, Kayvon
Kohler, Jennifer Jean
Mrksich, Milan
Bertozzi, Carolyn Ruth
author_facet Schumann, Benjamin
Malaker, Stacy Alyse
Wisnovsky, Simon Peter
Debets, Marjoke Froukje
Agbay, Anthony John
Fernandez, Daniel
Wagner, Lauren Jan Sarbo
Lin, Liang
Li, Zhen
Choi, Junwon
Fox, Douglas Michael
Peh, Jessie
Gray, Melissa Anne
Pedram, Kayvon
Kohler, Jennifer Jean
Mrksich, Milan
Bertozzi, Carolyn Ruth
author_sort Schumann, Benjamin
collection PubMed
description Studying posttranslational modifications classically relies on experimental strategies that oversimplify the complex biosynthetic machineries of living cells. Protein glycosylation contributes to essential biological processes, but correlating glycan structure, underlying protein, and disease-relevant biosynthetic regulation is currently elusive. Here, we engineer living cells to tag glycans with editable chemical functionalities while providing information on biosynthesis, physiological context, and glycan fine structure. We introduce a non-natural substrate biosynthetic pathway and use engineered glycosyltransferases to incorporate chemically tagged sugars into the cell surface glycome of the living cell. We apply the strategy to a particularly redundant yet disease-relevant human glycosyltransferase family, the polypeptide N-acetylgalactosaminyl transferases. This approach bestows a gain-of-chemical-functionality modification on cells, where the products of individual glycosyltransferases can be selectively characterized or manipulated to understand glycan contribution to major physiological processes.
format Online
Article
Text
id pubmed-7276986
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-72769862020-06-11 Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells Schumann, Benjamin Malaker, Stacy Alyse Wisnovsky, Simon Peter Debets, Marjoke Froukje Agbay, Anthony John Fernandez, Daniel Wagner, Lauren Jan Sarbo Lin, Liang Li, Zhen Choi, Junwon Fox, Douglas Michael Peh, Jessie Gray, Melissa Anne Pedram, Kayvon Kohler, Jennifer Jean Mrksich, Milan Bertozzi, Carolyn Ruth Mol Cell Article Studying posttranslational modifications classically relies on experimental strategies that oversimplify the complex biosynthetic machineries of living cells. Protein glycosylation contributes to essential biological processes, but correlating glycan structure, underlying protein, and disease-relevant biosynthetic regulation is currently elusive. Here, we engineer living cells to tag glycans with editable chemical functionalities while providing information on biosynthesis, physiological context, and glycan fine structure. We introduce a non-natural substrate biosynthetic pathway and use engineered glycosyltransferases to incorporate chemically tagged sugars into the cell surface glycome of the living cell. We apply the strategy to a particularly redundant yet disease-relevant human glycosyltransferase family, the polypeptide N-acetylgalactosaminyl transferases. This approach bestows a gain-of-chemical-functionality modification on cells, where the products of individual glycosyltransferases can be selectively characterized or manipulated to understand glycan contribution to major physiological processes. Cell Press 2020-06-04 /pmc/articles/PMC7276986/ /pubmed/32325029 http://dx.doi.org/10.1016/j.molcel.2020.03.030 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Schumann, Benjamin
Malaker, Stacy Alyse
Wisnovsky, Simon Peter
Debets, Marjoke Froukje
Agbay, Anthony John
Fernandez, Daniel
Wagner, Lauren Jan Sarbo
Lin, Liang
Li, Zhen
Choi, Junwon
Fox, Douglas Michael
Peh, Jessie
Gray, Melissa Anne
Pedram, Kayvon
Kohler, Jennifer Jean
Mrksich, Milan
Bertozzi, Carolyn Ruth
Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells
title Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells
title_full Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells
title_fullStr Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells
title_full_unstemmed Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells
title_short Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells
title_sort bump-and-hole engineering identifies specific substrates of glycosyltransferases in living cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276986/
https://www.ncbi.nlm.nih.gov/pubmed/32325029
http://dx.doi.org/10.1016/j.molcel.2020.03.030
work_keys_str_mv AT schumannbenjamin bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT malakerstacyalyse bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT wisnovskysimonpeter bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT debetsmarjokefroukje bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT agbayanthonyjohn bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT fernandezdaniel bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT wagnerlaurenjansarbo bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT linliang bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT lizhen bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT choijunwon bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT foxdouglasmichael bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT pehjessie bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT graymelissaanne bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT pedramkayvon bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT kohlerjenniferjean bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT mrksichmilan bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells
AT bertozzicarolynruth bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells