Cargando…
Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells
Studying posttranslational modifications classically relies on experimental strategies that oversimplify the complex biosynthetic machineries of living cells. Protein glycosylation contributes to essential biological processes, but correlating glycan structure, underlying protein, and disease-releva...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276986/ https://www.ncbi.nlm.nih.gov/pubmed/32325029 http://dx.doi.org/10.1016/j.molcel.2020.03.030 |
_version_ | 1783543029084192768 |
---|---|
author | Schumann, Benjamin Malaker, Stacy Alyse Wisnovsky, Simon Peter Debets, Marjoke Froukje Agbay, Anthony John Fernandez, Daniel Wagner, Lauren Jan Sarbo Lin, Liang Li, Zhen Choi, Junwon Fox, Douglas Michael Peh, Jessie Gray, Melissa Anne Pedram, Kayvon Kohler, Jennifer Jean Mrksich, Milan Bertozzi, Carolyn Ruth |
author_facet | Schumann, Benjamin Malaker, Stacy Alyse Wisnovsky, Simon Peter Debets, Marjoke Froukje Agbay, Anthony John Fernandez, Daniel Wagner, Lauren Jan Sarbo Lin, Liang Li, Zhen Choi, Junwon Fox, Douglas Michael Peh, Jessie Gray, Melissa Anne Pedram, Kayvon Kohler, Jennifer Jean Mrksich, Milan Bertozzi, Carolyn Ruth |
author_sort | Schumann, Benjamin |
collection | PubMed |
description | Studying posttranslational modifications classically relies on experimental strategies that oversimplify the complex biosynthetic machineries of living cells. Protein glycosylation contributes to essential biological processes, but correlating glycan structure, underlying protein, and disease-relevant biosynthetic regulation is currently elusive. Here, we engineer living cells to tag glycans with editable chemical functionalities while providing information on biosynthesis, physiological context, and glycan fine structure. We introduce a non-natural substrate biosynthetic pathway and use engineered glycosyltransferases to incorporate chemically tagged sugars into the cell surface glycome of the living cell. We apply the strategy to a particularly redundant yet disease-relevant human glycosyltransferase family, the polypeptide N-acetylgalactosaminyl transferases. This approach bestows a gain-of-chemical-functionality modification on cells, where the products of individual glycosyltransferases can be selectively characterized or manipulated to understand glycan contribution to major physiological processes. |
format | Online Article Text |
id | pubmed-7276986 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-72769862020-06-11 Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells Schumann, Benjamin Malaker, Stacy Alyse Wisnovsky, Simon Peter Debets, Marjoke Froukje Agbay, Anthony John Fernandez, Daniel Wagner, Lauren Jan Sarbo Lin, Liang Li, Zhen Choi, Junwon Fox, Douglas Michael Peh, Jessie Gray, Melissa Anne Pedram, Kayvon Kohler, Jennifer Jean Mrksich, Milan Bertozzi, Carolyn Ruth Mol Cell Article Studying posttranslational modifications classically relies on experimental strategies that oversimplify the complex biosynthetic machineries of living cells. Protein glycosylation contributes to essential biological processes, but correlating glycan structure, underlying protein, and disease-relevant biosynthetic regulation is currently elusive. Here, we engineer living cells to tag glycans with editable chemical functionalities while providing information on biosynthesis, physiological context, and glycan fine structure. We introduce a non-natural substrate biosynthetic pathway and use engineered glycosyltransferases to incorporate chemically tagged sugars into the cell surface glycome of the living cell. We apply the strategy to a particularly redundant yet disease-relevant human glycosyltransferase family, the polypeptide N-acetylgalactosaminyl transferases. This approach bestows a gain-of-chemical-functionality modification on cells, where the products of individual glycosyltransferases can be selectively characterized or manipulated to understand glycan contribution to major physiological processes. Cell Press 2020-06-04 /pmc/articles/PMC7276986/ /pubmed/32325029 http://dx.doi.org/10.1016/j.molcel.2020.03.030 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Schumann, Benjamin Malaker, Stacy Alyse Wisnovsky, Simon Peter Debets, Marjoke Froukje Agbay, Anthony John Fernandez, Daniel Wagner, Lauren Jan Sarbo Lin, Liang Li, Zhen Choi, Junwon Fox, Douglas Michael Peh, Jessie Gray, Melissa Anne Pedram, Kayvon Kohler, Jennifer Jean Mrksich, Milan Bertozzi, Carolyn Ruth Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells |
title | Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells |
title_full | Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells |
title_fullStr | Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells |
title_full_unstemmed | Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells |
title_short | Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells |
title_sort | bump-and-hole engineering identifies specific substrates of glycosyltransferases in living cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276986/ https://www.ncbi.nlm.nih.gov/pubmed/32325029 http://dx.doi.org/10.1016/j.molcel.2020.03.030 |
work_keys_str_mv | AT schumannbenjamin bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT malakerstacyalyse bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT wisnovskysimonpeter bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT debetsmarjokefroukje bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT agbayanthonyjohn bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT fernandezdaniel bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT wagnerlaurenjansarbo bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT linliang bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT lizhen bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT choijunwon bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT foxdouglasmichael bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT pehjessie bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT graymelissaanne bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT pedramkayvon bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT kohlerjenniferjean bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT mrksichmilan bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells AT bertozzicarolynruth bumpandholeengineeringidentifiesspecificsubstratesofglycosyltransferasesinlivingcells |