Cargando…
Preparation and properties of amphiphilic hydrophobically associative polymer/ montmorillonite nanocomposites
In this research, a novel amphiphilic hydrophobically associative polymer nanocomposite (ADOS/OMMT) was prepared using acrylamide (AM), sodium 4-vinylbenzenesulfonate (SSS), N, N′-dimethyl octadeyl allyl ammonium bromide (DOAAB) and organo-modified montmorillonite (OMMT) through in situ polymerizati...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277241/ https://www.ncbi.nlm.nih.gov/pubmed/32537221 http://dx.doi.org/10.1098/rsos.200199 |
Sumario: | In this research, a novel amphiphilic hydrophobically associative polymer nanocomposite (ADOS/OMMT) was prepared using acrylamide (AM), sodium 4-vinylbenzenesulfonate (SSS), N, N′-dimethyl octadeyl allyl ammonium bromide (DOAAB) and organo-modified montmorillonite (OMMT) through in situ polymerization. Both X-ray diffraction patterns and transmission electron microscopy images verified the dispersion morphology of OMMT in the copolymer matrix. Then, the effect of the introduction of OMMT layers on the copolymer properties was studied by comparing with pure copolymer AM/SSS/DOAAB (ADOS). The thermal degradation results demonstrated that the thermal stability of the ADOS/OMMT were better than pure copolymer ADOS. During the solution properties tests, ADOS/OMMT nanocomposite was superior to ADOS in viscosifying ability, temperature resistance, salt tolerance, shear resistance and viscoelasticity, which was because OMMT contributed to enhance the hydrophobic association structure formed between polymer molecules. Additionally, the ADOS/OMMT nanocomposite exhibited more excellent interfacial activity and crude oil emulsifiability in comparison to pure copolymer ADOS. These performances indicated ADOS/OMMT nanocomposite had good application prospects in tertiary recovery. |
---|