Cargando…
Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology
The identification of sea turtle behaviours is a prerequisite to predicting the activities and time-budget of these animals in their natural habitat over the long term. However, this is hampered by a lack of reliable methods that enable the detection and monitoring of certain key behaviours such as...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277266/ https://www.ncbi.nlm.nih.gov/pubmed/32537218 http://dx.doi.org/10.1098/rsos.200139 |
_version_ | 1783543084386091008 |
---|---|
author | Jeantet, Lorène Planas-Bielsa, Víctor Benhamou, Simon Geiger, Sebastien Martin, Jordan Siegwalt, Flora Lelong, Pierre Gresser, Julie Etienne, Denis Hiélard, Gaëlle Arque, Alexandre Regis, Sidney Lecerf, Nicolas Frouin, Cédric Benhalilou, Abdelwahab Murgale, Céline Maillet, Thomas Andreani, Lucas Campistron, Guilhem Delvaux, Hélène Guyon, Christelle Richard, Sandrine Lefebvre, Fabien Aubert, Nathalie Habold, Caroline le Maho, Yvon Chevallier, Damien |
author_facet | Jeantet, Lorène Planas-Bielsa, Víctor Benhamou, Simon Geiger, Sebastien Martin, Jordan Siegwalt, Flora Lelong, Pierre Gresser, Julie Etienne, Denis Hiélard, Gaëlle Arque, Alexandre Regis, Sidney Lecerf, Nicolas Frouin, Cédric Benhalilou, Abdelwahab Murgale, Céline Maillet, Thomas Andreani, Lucas Campistron, Guilhem Delvaux, Hélène Guyon, Christelle Richard, Sandrine Lefebvre, Fabien Aubert, Nathalie Habold, Caroline le Maho, Yvon Chevallier, Damien |
author_sort | Jeantet, Lorène |
collection | PubMed |
description | The identification of sea turtle behaviours is a prerequisite to predicting the activities and time-budget of these animals in their natural habitat over the long term. However, this is hampered by a lack of reliable methods that enable the detection and monitoring of certain key behaviours such as feeding. This study proposes a combined approach that automatically identifies the different behaviours of free-ranging sea turtles through the use of animal-borne multi-sensor recorders (accelerometer, gyroscope and time-depth recorder), validated by animal-borne video-recorder data. We show here that the combination of supervised learning algorithms and multi-signal analysis tools can provide accurate inferences of the behaviours expressed, including feeding and scratching behaviours that are of crucial ecological interest for sea turtles. Our procedure uses multi-sensor miniaturized loggers that can be deployed on free-ranging animals with minimal disturbance. It provides an easily adaptable and replicable approach for the long-term automatic identification of the different activities and determination of time-budgets in sea turtles. This approach should also be applicable to a broad range of other species and could significantly contribute to the conservation of endangered species by providing detailed knowledge of key animal activities such as feeding, travelling and resting. |
format | Online Article Text |
id | pubmed-7277266 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-72772662020-06-11 Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology Jeantet, Lorène Planas-Bielsa, Víctor Benhamou, Simon Geiger, Sebastien Martin, Jordan Siegwalt, Flora Lelong, Pierre Gresser, Julie Etienne, Denis Hiélard, Gaëlle Arque, Alexandre Regis, Sidney Lecerf, Nicolas Frouin, Cédric Benhalilou, Abdelwahab Murgale, Céline Maillet, Thomas Andreani, Lucas Campistron, Guilhem Delvaux, Hélène Guyon, Christelle Richard, Sandrine Lefebvre, Fabien Aubert, Nathalie Habold, Caroline le Maho, Yvon Chevallier, Damien R Soc Open Sci Ecology, Conservation, and Global Change Biology The identification of sea turtle behaviours is a prerequisite to predicting the activities and time-budget of these animals in their natural habitat over the long term. However, this is hampered by a lack of reliable methods that enable the detection and monitoring of certain key behaviours such as feeding. This study proposes a combined approach that automatically identifies the different behaviours of free-ranging sea turtles through the use of animal-borne multi-sensor recorders (accelerometer, gyroscope and time-depth recorder), validated by animal-borne video-recorder data. We show here that the combination of supervised learning algorithms and multi-signal analysis tools can provide accurate inferences of the behaviours expressed, including feeding and scratching behaviours that are of crucial ecological interest for sea turtles. Our procedure uses multi-sensor miniaturized loggers that can be deployed on free-ranging animals with minimal disturbance. It provides an easily adaptable and replicable approach for the long-term automatic identification of the different activities and determination of time-budgets in sea turtles. This approach should also be applicable to a broad range of other species and could significantly contribute to the conservation of endangered species by providing detailed knowledge of key animal activities such as feeding, travelling and resting. The Royal Society 2020-05-13 /pmc/articles/PMC7277266/ /pubmed/32537218 http://dx.doi.org/10.1098/rsos.200139 Text en © 2020 The Authors. http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Ecology, Conservation, and Global Change Biology Jeantet, Lorène Planas-Bielsa, Víctor Benhamou, Simon Geiger, Sebastien Martin, Jordan Siegwalt, Flora Lelong, Pierre Gresser, Julie Etienne, Denis Hiélard, Gaëlle Arque, Alexandre Regis, Sidney Lecerf, Nicolas Frouin, Cédric Benhalilou, Abdelwahab Murgale, Céline Maillet, Thomas Andreani, Lucas Campistron, Guilhem Delvaux, Hélène Guyon, Christelle Richard, Sandrine Lefebvre, Fabien Aubert, Nathalie Habold, Caroline le Maho, Yvon Chevallier, Damien Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology |
title | Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology |
title_full | Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology |
title_fullStr | Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology |
title_full_unstemmed | Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology |
title_short | Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology |
title_sort | behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology |
topic | Ecology, Conservation, and Global Change Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277266/ https://www.ncbi.nlm.nih.gov/pubmed/32537218 http://dx.doi.org/10.1098/rsos.200139 |
work_keys_str_mv | AT jeantetlorene behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT planasbielsavictor behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT benhamousimon behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT geigersebastien behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT martinjordan behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT siegwaltflora behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT lelongpierre behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT gresserjulie behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT etiennedenis behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT hielardgaelle behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT arquealexandre behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT regissidney behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT lecerfnicolas behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT frouincedric behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT benhalilouabdelwahab behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT murgaleceline behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT mailletthomas behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT andreanilucas behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT campistronguilhem behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT delvauxhelene behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT guyonchristelle behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT richardsandrine behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT lefebvrefabien behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT aubertnathalie behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT haboldcaroline behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT lemahoyvon behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology AT chevallierdamien behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology |