Cargando…

Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology

The identification of sea turtle behaviours is a prerequisite to predicting the activities and time-budget of these animals in their natural habitat over the long term. However, this is hampered by a lack of reliable methods that enable the detection and monitoring of certain key behaviours such as...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeantet, Lorène, Planas-Bielsa, Víctor, Benhamou, Simon, Geiger, Sebastien, Martin, Jordan, Siegwalt, Flora, Lelong, Pierre, Gresser, Julie, Etienne, Denis, Hiélard, Gaëlle, Arque, Alexandre, Regis, Sidney, Lecerf, Nicolas, Frouin, Cédric, Benhalilou, Abdelwahab, Murgale, Céline, Maillet, Thomas, Andreani, Lucas, Campistron, Guilhem, Delvaux, Hélène, Guyon, Christelle, Richard, Sandrine, Lefebvre, Fabien, Aubert, Nathalie, Habold, Caroline, le Maho, Yvon, Chevallier, Damien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277266/
https://www.ncbi.nlm.nih.gov/pubmed/32537218
http://dx.doi.org/10.1098/rsos.200139
_version_ 1783543084386091008
author Jeantet, Lorène
Planas-Bielsa, Víctor
Benhamou, Simon
Geiger, Sebastien
Martin, Jordan
Siegwalt, Flora
Lelong, Pierre
Gresser, Julie
Etienne, Denis
Hiélard, Gaëlle
Arque, Alexandre
Regis, Sidney
Lecerf, Nicolas
Frouin, Cédric
Benhalilou, Abdelwahab
Murgale, Céline
Maillet, Thomas
Andreani, Lucas
Campistron, Guilhem
Delvaux, Hélène
Guyon, Christelle
Richard, Sandrine
Lefebvre, Fabien
Aubert, Nathalie
Habold, Caroline
le Maho, Yvon
Chevallier, Damien
author_facet Jeantet, Lorène
Planas-Bielsa, Víctor
Benhamou, Simon
Geiger, Sebastien
Martin, Jordan
Siegwalt, Flora
Lelong, Pierre
Gresser, Julie
Etienne, Denis
Hiélard, Gaëlle
Arque, Alexandre
Regis, Sidney
Lecerf, Nicolas
Frouin, Cédric
Benhalilou, Abdelwahab
Murgale, Céline
Maillet, Thomas
Andreani, Lucas
Campistron, Guilhem
Delvaux, Hélène
Guyon, Christelle
Richard, Sandrine
Lefebvre, Fabien
Aubert, Nathalie
Habold, Caroline
le Maho, Yvon
Chevallier, Damien
author_sort Jeantet, Lorène
collection PubMed
description The identification of sea turtle behaviours is a prerequisite to predicting the activities and time-budget of these animals in their natural habitat over the long term. However, this is hampered by a lack of reliable methods that enable the detection and monitoring of certain key behaviours such as feeding. This study proposes a combined approach that automatically identifies the different behaviours of free-ranging sea turtles through the use of animal-borne multi-sensor recorders (accelerometer, gyroscope and time-depth recorder), validated by animal-borne video-recorder data. We show here that the combination of supervised learning algorithms and multi-signal analysis tools can provide accurate inferences of the behaviours expressed, including feeding and scratching behaviours that are of crucial ecological interest for sea turtles. Our procedure uses multi-sensor miniaturized loggers that can be deployed on free-ranging animals with minimal disturbance. It provides an easily adaptable and replicable approach for the long-term automatic identification of the different activities and determination of time-budgets in sea turtles. This approach should also be applicable to a broad range of other species and could significantly contribute to the conservation of endangered species by providing detailed knowledge of key animal activities such as feeding, travelling and resting.
format Online
Article
Text
id pubmed-7277266
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-72772662020-06-11 Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology Jeantet, Lorène Planas-Bielsa, Víctor Benhamou, Simon Geiger, Sebastien Martin, Jordan Siegwalt, Flora Lelong, Pierre Gresser, Julie Etienne, Denis Hiélard, Gaëlle Arque, Alexandre Regis, Sidney Lecerf, Nicolas Frouin, Cédric Benhalilou, Abdelwahab Murgale, Céline Maillet, Thomas Andreani, Lucas Campistron, Guilhem Delvaux, Hélène Guyon, Christelle Richard, Sandrine Lefebvre, Fabien Aubert, Nathalie Habold, Caroline le Maho, Yvon Chevallier, Damien R Soc Open Sci Ecology, Conservation, and Global Change Biology The identification of sea turtle behaviours is a prerequisite to predicting the activities and time-budget of these animals in their natural habitat over the long term. However, this is hampered by a lack of reliable methods that enable the detection and monitoring of certain key behaviours such as feeding. This study proposes a combined approach that automatically identifies the different behaviours of free-ranging sea turtles through the use of animal-borne multi-sensor recorders (accelerometer, gyroscope and time-depth recorder), validated by animal-borne video-recorder data. We show here that the combination of supervised learning algorithms and multi-signal analysis tools can provide accurate inferences of the behaviours expressed, including feeding and scratching behaviours that are of crucial ecological interest for sea turtles. Our procedure uses multi-sensor miniaturized loggers that can be deployed on free-ranging animals with minimal disturbance. It provides an easily adaptable and replicable approach for the long-term automatic identification of the different activities and determination of time-budgets in sea turtles. This approach should also be applicable to a broad range of other species and could significantly contribute to the conservation of endangered species by providing detailed knowledge of key animal activities such as feeding, travelling and resting. The Royal Society 2020-05-13 /pmc/articles/PMC7277266/ /pubmed/32537218 http://dx.doi.org/10.1098/rsos.200139 Text en © 2020 The Authors. http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Ecology, Conservation, and Global Change Biology
Jeantet, Lorène
Planas-Bielsa, Víctor
Benhamou, Simon
Geiger, Sebastien
Martin, Jordan
Siegwalt, Flora
Lelong, Pierre
Gresser, Julie
Etienne, Denis
Hiélard, Gaëlle
Arque, Alexandre
Regis, Sidney
Lecerf, Nicolas
Frouin, Cédric
Benhalilou, Abdelwahab
Murgale, Céline
Maillet, Thomas
Andreani, Lucas
Campistron, Guilhem
Delvaux, Hélène
Guyon, Christelle
Richard, Sandrine
Lefebvre, Fabien
Aubert, Nathalie
Habold, Caroline
le Maho, Yvon
Chevallier, Damien
Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology
title Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology
title_full Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology
title_fullStr Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology
title_full_unstemmed Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology
title_short Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology
title_sort behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology
topic Ecology, Conservation, and Global Change Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277266/
https://www.ncbi.nlm.nih.gov/pubmed/32537218
http://dx.doi.org/10.1098/rsos.200139
work_keys_str_mv AT jeantetlorene behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT planasbielsavictor behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT benhamousimon behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT geigersebastien behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT martinjordan behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT siegwaltflora behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT lelongpierre behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT gresserjulie behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT etiennedenis behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT hielardgaelle behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT arquealexandre behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT regissidney behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT lecerfnicolas behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT frouincedric behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT benhalilouabdelwahab behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT murgaleceline behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT mailletthomas behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT andreanilucas behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT campistronguilhem behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT delvauxhelene behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT guyonchristelle behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT richardsandrine behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT lefebvrefabien behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT aubertnathalie behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT haboldcaroline behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT lemahoyvon behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology
AT chevallierdamien behaviouralinferencefromsignalprocessingusinganimalbornemultisensorloggersanovelsolutiontoextendtheknowledgeofseaturtleecology