Cargando…

Assessment of the Antitumor Potential of Umbelliprenin, a Naturally Occurring Sesquiterpene Coumarin

Cancer is one of the greatest causes of mortality worldwide. The prevalence rates of different types of cancer is increasing around the world as well. Limitations in chemotherapy and radiotherapy, owing to multiple side effects including cytotoxic effects of antitumor compounds on normal cells as we...

Descripción completa

Detalles Bibliográficos
Autores principales: Shahzadi, Iram, Ali, Zain, Baek, Seung Ho, Mirza, Bushra, Ahn, Kwang Seok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277383/
https://www.ncbi.nlm.nih.gov/pubmed/32443431
http://dx.doi.org/10.3390/biomedicines8050126
Descripción
Sumario:Cancer is one of the greatest causes of mortality worldwide. The prevalence rates of different types of cancer is increasing around the world as well. Limitations in chemotherapy and radiotherapy, owing to multiple side effects including cytotoxic effects of antitumor compounds on normal cells as well as the development of resistance to these treatment options in patients, create a serious threat to successful treatment of cancer. The use of natural compounds to prevent and treat cancers has been found to be quite effective, with fewer adverse effects found in patients. Umbelliprenin (UMB) is a naturally occurring sesquiterpene compound found in Ferula species and recently in Artemisia absinthium. Many studies have highlighted the antitumor potential of UMB in different cancer cell lines as well as in animal models. UMB exerts its anticancer actions by regulating extrinsic and intrinsic apoptotic pathways; causing inhibition of the cell cycle at the G0/G1 phase; and attenuating migration and invasion by modulating the Wnt signaling, NF-ĸB, TGFβ, and Fox3 signaling pathways. UMB also affects the key hallmarks of tumor cells by attenuating tumor growth, angiogenesis, and metastasis. This review provides an insight into the role of UMB as a potential antitumor drug for different malignancies and highlights the signaling cascades affected by UMB treatment in diverse tumor cell lines and preclinical models.