Cargando…
A Comparison between Several Response Surface Methodology Designs and a Neural Network Model to Optimise the Oxidation Conditions of a Lignocellulosic Blend
In this paper, response surface methodology (RSM) designs and an artificial neural network (ANN) are used to obtain the optimal conditions for the oxy-combustion of a corn–rape blend. The ignition temperature (T(e)) and burnout index (D(f)) were selected as the responses to be optimised, while the C...
Autores principales: | López, Roberto, Fernández, Camino, Pereira, Fernando J., Díez, Ana, Cara, Jorge, Martínez, Olegario, Sánchez, Marta E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277586/ https://www.ncbi.nlm.nih.gov/pubmed/32438759 http://dx.doi.org/10.3390/biom10050787 |
Ejemplares similares
-
Response Surface Methodology for the Optimisation of Electrochemical Biosensors for Heavy Metals Detection
por: De Benedetto, Giuseppe Egidio, et al.
Publicado: (2019) -
Optimisation of Stingless Bee Honey Nanoemulsions Using Response Surface Methodology
por: Rozman, Azri Shahir, et al.
Publicado: (2021) -
Supply Chain Optimisation for an Ultrasound-Organosolv Lignocellulosic Biorefinery: Impact of Technology Choices
por: Bussemaker, Madeleine J., et al.
Publicado: (2017) -
Ultrasound-assisted extraction conditions optimisation using response surface methodology from Mitragyna speciosa (Korth.) Havil leaves
por: Zakaria, Fazila, et al.
Publicado: (2021) -
Response Surface Methodology: Optimisation of Antifungal Bioemulsifier from Novel Bacillus thuringiensis
por: Rajendran, Deepak, et al.
Publicado: (2014)