Cargando…
Mining Drug-Target Associations in Cancer: Analysis of Gene Expression and Drug Activity Correlations
Cancer is a complex disease affecting millions of people worldwide, with over a hundred clinically approved drugs available. In order to improve therapy, treatment, and response, it is essential to draw better maps of the targets of cancer drugs and possible side interactors. This study presents a l...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277587/ https://www.ncbi.nlm.nih.gov/pubmed/32344870 http://dx.doi.org/10.3390/biom10050667 |
_version_ | 1783543152850763776 |
---|---|
author | Arroyo, Monica M. Berral-González, Alberto Bueno-Fortes, Santiago Alonso-López, Diego De Las Rivas, Javier |
author_facet | Arroyo, Monica M. Berral-González, Alberto Bueno-Fortes, Santiago Alonso-López, Diego De Las Rivas, Javier |
author_sort | Arroyo, Monica M. |
collection | PubMed |
description | Cancer is a complex disease affecting millions of people worldwide, with over a hundred clinically approved drugs available. In order to improve therapy, treatment, and response, it is essential to draw better maps of the targets of cancer drugs and possible side interactors. This study presents a large-scale screening method to find associations of cancer drugs with human genes. The analysis is focused on the current collection of Food and Drug Administration (FDA)-approved drugs (which includes about one hundred chemicals). The approach integrates global gene-expression transcriptomic profiles with drug-activity profiles of a set of 60 human cell lines obtained for a collection of chemical compounds (small bioactive molecules). Using a standardized expression for each gene versus standardized activity for each drug, Pearson and Spearman correlations were calculated for all possible pairwise gene-drug combinations. These correlations were used to build a global bipartite network that includes 1007 gene-drug significant associations. The data are integrated into an open web-tool called GEDA (Gene Expression and Drug Activity) which includes a relational view of cancer drugs and genes, disclosing the putative indirect interactions found for FDA-approved drugs as well as the known targets of these drugs. The results also provide insight into the complex action of pharmaceuticals, presenting an alternative view to address predicted pleiotropic effects of the drugs. |
format | Online Article Text |
id | pubmed-7277587 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72775872020-06-12 Mining Drug-Target Associations in Cancer: Analysis of Gene Expression and Drug Activity Correlations Arroyo, Monica M. Berral-González, Alberto Bueno-Fortes, Santiago Alonso-López, Diego De Las Rivas, Javier Biomolecules Article Cancer is a complex disease affecting millions of people worldwide, with over a hundred clinically approved drugs available. In order to improve therapy, treatment, and response, it is essential to draw better maps of the targets of cancer drugs and possible side interactors. This study presents a large-scale screening method to find associations of cancer drugs with human genes. The analysis is focused on the current collection of Food and Drug Administration (FDA)-approved drugs (which includes about one hundred chemicals). The approach integrates global gene-expression transcriptomic profiles with drug-activity profiles of a set of 60 human cell lines obtained for a collection of chemical compounds (small bioactive molecules). Using a standardized expression for each gene versus standardized activity for each drug, Pearson and Spearman correlations were calculated for all possible pairwise gene-drug combinations. These correlations were used to build a global bipartite network that includes 1007 gene-drug significant associations. The data are integrated into an open web-tool called GEDA (Gene Expression and Drug Activity) which includes a relational view of cancer drugs and genes, disclosing the putative indirect interactions found for FDA-approved drugs as well as the known targets of these drugs. The results also provide insight into the complex action of pharmaceuticals, presenting an alternative view to address predicted pleiotropic effects of the drugs. MDPI 2020-04-25 /pmc/articles/PMC7277587/ /pubmed/32344870 http://dx.doi.org/10.3390/biom10050667 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Arroyo, Monica M. Berral-González, Alberto Bueno-Fortes, Santiago Alonso-López, Diego De Las Rivas, Javier Mining Drug-Target Associations in Cancer: Analysis of Gene Expression and Drug Activity Correlations |
title | Mining Drug-Target Associations in Cancer: Analysis of Gene Expression and Drug Activity Correlations |
title_full | Mining Drug-Target Associations in Cancer: Analysis of Gene Expression and Drug Activity Correlations |
title_fullStr | Mining Drug-Target Associations in Cancer: Analysis of Gene Expression and Drug Activity Correlations |
title_full_unstemmed | Mining Drug-Target Associations in Cancer: Analysis of Gene Expression and Drug Activity Correlations |
title_short | Mining Drug-Target Associations in Cancer: Analysis of Gene Expression and Drug Activity Correlations |
title_sort | mining drug-target associations in cancer: analysis of gene expression and drug activity correlations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277587/ https://www.ncbi.nlm.nih.gov/pubmed/32344870 http://dx.doi.org/10.3390/biom10050667 |
work_keys_str_mv | AT arroyomonicam miningdrugtargetassociationsincanceranalysisofgeneexpressionanddrugactivitycorrelations AT berralgonzalezalberto miningdrugtargetassociationsincanceranalysisofgeneexpressionanddrugactivitycorrelations AT buenofortessantiago miningdrugtargetassociationsincanceranalysisofgeneexpressionanddrugactivitycorrelations AT alonsolopezdiego miningdrugtargetassociationsincanceranalysisofgeneexpressionanddrugactivitycorrelations AT delasrivasjavier miningdrugtargetassociationsincanceranalysisofgeneexpressionanddrugactivitycorrelations |