Cargando…

Effects of Hydrolysable Tannins as Zinc Oxide Substitutes on Antioxidant Status, Immune Function, Intestinal Morphology, and Digestive Enzyme Activities in Weaned Piglets

SIMPLE SUMMARY: Zinc oxide (ZnO) is generally used to control diarrhea and improve gut health in weaned piglets. To protect weaned pigs from intestinal injuries and to decrease environmental zinc load, it is essential to find an alternative to ZnO. In the present study, hydrolysable tannins (HT) sho...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Hansuo, Hu, Jiangxu, Mahfuz, Shad, Piao, Xiangshu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277717/
https://www.ncbi.nlm.nih.gov/pubmed/32349238
http://dx.doi.org/10.3390/ani10050757
Descripción
Sumario:SIMPLE SUMMARY: Zinc oxide (ZnO) is generally used to control diarrhea and improve gut health in weaned piglets. To protect weaned pigs from intestinal injuries and to decrease environmental zinc load, it is essential to find an alternative to ZnO. In the present study, hydrolysable tannins (HT) showed decreased diarrhea rate and improving gut health via multiple pathways. Herein we demonstrate that HT supplementation may be a potential alternative of ZnO in weaned piglets. ABSTRACT: Zinc oxide (ZnO) has negative environmental effects and bioavailability in weaned piglets. Thus, finding safe and effective ZnO substitutes to improve intestinal health and to prevent diarrhea of weaned piglets is urgently required. Therefore, this experiment was conducted to evaluate the effects of hydrolysable tannins (HT), ZnO and HT versus ZnO on growth performance, antioxidant status, serum immunity, intestinal morphology, and digestive enzyme activities in weaned pigs. A total of 144 piglets (28 d-old, initial body weight 7.81 ± 0.99 kg) were assigned to 4 treatments with 6 replicates of 6 piglets each. The experiment lasted 28 d (d 1 to 14 as for phase 1 and d 15 to 28 as for phase 2). The dietary treatments include a corn-soybean meal basal diet (CON); ZnO diet (CON + 2000 mg/kg ZnO in phase 1 and 137.5 mg/kg ZnO in phase 2); HT diet (CON + 1000 mg/kg HT in the overall period (d 1 to 28); HT + ZnO diet (CON + 2000 mg/kg ZnO + 1000 mg/kg HT in phase 1, and 137.5 mg/kg ZnO + 1000 mg/kg HT in phase 2). In phase 1, the incidence of diarrhea was lower (p < 0.05) in the HT + ZnO group than CON. Serum catalase (CAT) and glutathione peroxidase (GSH-Px) were increased (p < 0.01) and malondialdehyde (MDA) was decreased (p < 0.01) in the HT + ZnO group than CON. Compared with CON, immunoglobulin M (IgM), immunoglobulin A (IgA) were increased (p < 0.05) in the HT + ZnO group. In phase 2, both HT and HT + ZnO had a trend to improve (p < 0.10) daily gain. The concentration of total antioxidant capacity (T-AOC) and IgM in serum was higher (p < 0.01) in HT compared with CON. Supplementation of HT improved (p < 0.01) GSH-Px activities in ileum mucosa than the ZnO group. Compared with CON, trypsin, lipase activities, and villus height of jejunum were improved (p < 0.05) in HT and HT + ZnO. The ratio of villus height to crypt depth in the jejunum was improved (p < 0.05) in the HT + ZnO group and which also was increased (p < 0.05) in ileum in the HT group compared with CON. Propionic acid, butyric acid, and acetic acid concentrations in the colon were increased (p < 0.05) in the HT group than CON. Overall, HT + ZnO treatments could be used to replace ZnO for reducing diarrhea and improving antioxidant capacity, immunity, and digestive enzyme activities in weaned piglets.