Cargando…

Interleukin-6-knockdown of chimeric antigen receptor-modified T cells significantly reduces IL-6 release from monocytes

BACKGROUND: T cells expressing a chimeric antigen receptor (CAR) engineered to target CD19 can treat leukemia effectively but also increase the risk of complications such as cytokine release syndrome (CRS) and CAR T cell related encephalopathy (CRES) driven by interleukin-6 (IL-6). Here, we investig...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Liqing, Tang, Xiaowen, Zhang, Jian, Li, Minghao, Xu, Nan, Qi, Wei, Tan, Jingwen, Lou, Xiaoyan, Yu, Zhou, Sun, Juanjuan, Wang, Zhenkun, Dai, Haiping, Chen, Jia, Lin, Guoqing, Wu, Depei, Yu, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278071/
https://www.ncbi.nlm.nih.gov/pubmed/32523801
http://dx.doi.org/10.1186/s40164-020-00166-2
Descripción
Sumario:BACKGROUND: T cells expressing a chimeric antigen receptor (CAR) engineered to target CD19 can treat leukemia effectively but also increase the risk of complications such as cytokine release syndrome (CRS) and CAR T cell related encephalopathy (CRES) driven by interleukin-6 (IL-6). Here, we investigated whether IL-6 knockdown in CART-19 cells can reduce IL-6 secretion from monocytes, which may reduce the risk of adverse events. METHODS: Supernatants from cocultures of regular CART-19 cells and B lymphoma cells were added to monocytes in vitro, and the IL-6 levels in monocyte supernatants were measured 24 h later. IL-6 expression was knocked down in regular CART-19 cells by adding a short hairpin RNA (shRNA) (termed ssCART-19) expression cassette specific for IL-6 to the conventional CAR vector. Transduction efficiency and cell proliferation were measured by flow cytometry, and cytotoxicity was measured by evaluating the release of lactate dehydrogenase into the medium. Gene expression was assessed by qRT-PCR and RNA sequencing. A xenograft leukemia mouse model was established by injecting NOD/SCID/γc-/- mice with luciferase-expressing B lymphoma cells, and then the animals were treated with regular CART-19 cells or ssCART-19. Tumor growth was assessed by bioluminescence imaging. RESULTS: Both recombinant IL-6 and CART-19 derived IL-6 significantly triggered IL-6 release by monocytes. IL-6 knockdown in ssCART-19 cells dramatically reduced IL-6 release from monocytes in vitro stduy. In vivo study further demonstrated that the mice bearing Raji cells treated with ssCART-19 cells showed significant lower IL-6 levels in serum than those treated with regular CART-19 cells, but comparable anti-tumor efficacy between the animal groups. CONCLUSION: CAR T-derived IL-6 is one of the most important initiators to amplify release of IL-6 from monocytes that further drive sCRS development. IL-6 knockdown in ssCART-19 cells by shRNA technology provide a promising strategy to improve the safety of CAR T cell therapy.