Cargando…

Parallel isotope differential modeling for instationary 13C fluxomics at the genome scale

BACKGROUND: A precise map of the metabolic fluxome, the closest surrogate to the physiological phenotype, is becoming progressively more important in the metabolic engineering of photosynthetic organisms for biofuel and biomass production. For photosynthetic organisms, the state-of-the-art method fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhengdong, Liu, Zhentao, Meng, Yafei, Chen, Zhen, Han, Jiayu, Wei, Yimin, Shen, Tie, Yi, Yin, Xie, Xiaoyao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278083/
https://www.ncbi.nlm.nih.gov/pubmed/32523616
http://dx.doi.org/10.1186/s13068-020-01737-5
Descripción
Sumario:BACKGROUND: A precise map of the metabolic fluxome, the closest surrogate to the physiological phenotype, is becoming progressively more important in the metabolic engineering of photosynthetic organisms for biofuel and biomass production. For photosynthetic organisms, the state-of-the-art method for this purpose is instationary 13C fluxomics, which has arisen as a sibling of transcriptomics or proteomics. Instationary 13C data processing requires solving high-dimensional nonlinear differential equations and leads to large computational and time costs when its scope is expanded to a genome-scale metabolic network. RESULT: Here, we present a parallelized method to model instationary 13C labeling data. The elementary metabolite unit (EMU) framework is reorganized to allow treating individual mass isotopomers and breaking up of their networks into strongly connected components (SCCs). A variable domain parallel algorithm is introduced to process ordinary differential equations in a parallel way. 15-fold acceleration is achieved for constant-step-size modeling and ~ fivefold acceleration for adaptive-step-size modeling. CONCLUSION: This algorithm is universally applicable to isotope granules such as EMUs and cumomers and can substantially accelerate instationary 13C fluxomics modeling. It thus has great potential to be widely adopted in any instationary 13C fluxomics modeling.