Cargando…
Machine Learning Technology Reveals the Concealed Interactions of Phytohormones on Medicinal Plant In Vitro Organogenesis
Organogenesis constitutes the biological feature driving plant in vitro regeneration, in which the role of plant hormones is crucial. The use of machine learning (ML) technology stands out as a novel approach to characterize the combined role of two phytohormones, the auxin indoleacetic acid (IAA) a...
Autores principales: | García-Pérez, Pascual, Lozano-Milo, Eva, Landín, Mariana, Gallego, Pedro Pablo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278175/ https://www.ncbi.nlm.nih.gov/pubmed/32403395 http://dx.doi.org/10.3390/biom10050746 |
Ejemplares similares
-
Combining Medicinal Plant In Vitro Culture with Machine Learning Technologies for Maximizing the Production of Phenolic Compounds
por: García-Pérez, Pascual, et al.
Publicado: (2020) -
Machine Learning Unmasked Nutritional Imbalances on the Medicinal Plant Bryophyllum sp. Cultured in vitro
por: García-Pérez, Pascual, et al.
Publicado: (2020) -
From Ethnomedicine to Plant Biotechnology and Machine Learning: The Valorization of the Medicinal Plant Bryophyllum sp.
por: García-Pérez, Pascual, et al.
Publicado: (2020) -
The Combination of Untargeted Metabolomics and Machine Learning Predicts the Biosynthesis of Phenolic Compounds in Bryophyllum Medicinal Plants (Genus Kalanchoe)
por: García-Pérez, Pascual, et al.
Publicado: (2021) -
Neurofuzzy logic predicts a fine-tuning metabolic reprogramming on elicited Bryophyllum PCSCs guided by salicylic acid
por: García-Pérez, Pascual, et al.
Publicado: (2022)