Cargando…

The development and validation of a radiomic nomogram for the preoperative prediction of lung adenocarcinoma

BACKGROUND: Accurate diagnosis of early lung cancer from small pulmonary nodules (SPN) is challenging in clinical setting. We aimed to develop a radiomic nomogram to differentiate lung adenocarcinoma from benign SPN. METHODS: This retrospective study included a total of 210 pathologically confirmed...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Qin, Huang, Yan, Chen, Huai, Liu, Yanwen, Liang, Ruihong, Zeng, Qingsi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278188/
https://www.ncbi.nlm.nih.gov/pubmed/32513144
http://dx.doi.org/10.1186/s12885-020-07017-7
Descripción
Sumario:BACKGROUND: Accurate diagnosis of early lung cancer from small pulmonary nodules (SPN) is challenging in clinical setting. We aimed to develop a radiomic nomogram to differentiate lung adenocarcinoma from benign SPN. METHODS: This retrospective study included a total of 210 pathologically confirmed SPN (≤ 10 mm) from 197 patients, which were randomly divided into a training dataset (n = 147; malignant nodules, n = 94) and a validation dataset (n = 63; malignant nodules, n = 39). Radiomic features were extracted from the cancerous volumes of interest on contrast-enhanced CT images. The least absolute shrinkage and selection operator (LASSO) regression was used for data dimension reduction, feature selection, and radiomic signature building. Using multivariable logistic regression analysis, a radiomic nomogram was developed incorporating the radiomic signature and the conventional CT signs observed by radiologists. Discrimination and calibration of the radiomic nomogram were evaluated. RESULTS: The radiomic signature consisting of five radiomic features achieved an AUC of 0.853 (95% confidence interval [CI]: 0.735–0.970), accuracy of 81.0%, sensitivity of 82.9%, and specificity of 77.3%. The two conventional CT signs achieved an AUC of 0.833 (95% CI: 0.707–0.958), accuracy of 65.1%, sensitivity of 53.7%, and specificity of 86.4%. The radiomic nomogram incorporating the radiomic signature and conventional CT signs showed an improved AUC of 0.857 (95% CI: 0.723–0.991), accuracy of 84.1%, sensitivity of 85.4%, and specificity of 81.8%. The radiomic nomogram had good calibration power. CONCLUSION: The radiomic nomogram might has the potential to be used as a non-invasive tool for individual prediction of SPN preoperatively. It might facilitate decision-making and improve the management of SPN in the clinical setting.