Cargando…

Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors

With the rise of artificial intelligence (AI) in drug discovery, de novo molecular generation provides new ways to explore chemical space. However, because de novo molecular generation methods rely on abundant known molecules, generated molecules may have a problem of novelty. Novelty is important i...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xuanyi, Xu, Yinqiu, Yao, Hequan, Lin, Kejiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278228/
https://www.ncbi.nlm.nih.gov/pubmed/33430983
http://dx.doi.org/10.1186/s13321-020-00446-3
Descripción
Sumario:With the rise of artificial intelligence (AI) in drug discovery, de novo molecular generation provides new ways to explore chemical space. However, because de novo molecular generation methods rely on abundant known molecules, generated molecules may have a problem of novelty. Novelty is important in highly competitive areas of medicinal chemistry, such as the discovery of kinase inhibitors. In this study, de novo molecular generation based on recurrent neural networks was applied to discover a new chemical space of kinase inhibitors. During the application, the practicality was evaluated, and new inspiration was found. With the successful discovery of one potent Pim1 inhibitor and two lead compounds that inhibit CDK4, AI-based molecular generation shows potentials in drug discovery and development. [Image: see text]