Cargando…
Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors
With the rise of artificial intelligence (AI) in drug discovery, de novo molecular generation provides new ways to explore chemical space. However, because de novo molecular generation methods rely on abundant known molecules, generated molecules may have a problem of novelty. Novelty is important i...
Autores principales: | Li, Xuanyi, Xu, Yinqiu, Yao, Hequan, Lin, Kejiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278228/ https://www.ncbi.nlm.nih.gov/pubmed/33430983 http://dx.doi.org/10.1186/s13321-020-00446-3 |
Ejemplares similares
-
GcForest-based compound-protein interaction prediction model and its application in discovering small-molecule drugs targeting CD47
por: Shan, Wenying, et al.
Publicado: (2023) -
The Characteristics of PD-L1 Inhibitors, from Peptides to Small Molecules
por: Zhong, Yanwen, et al.
Publicado: (2019) -
Chemical space exploration guided by deep neural networks
por: Karlov, Dmitry S., et al.
Publicado: (2019) -
Chemical space docking enables large-scale structure-based virtual screening to discover ROCK1 kinase inhibitors
por: Beroza, Paul, et al.
Publicado: (2022) -
Exploring the chemical space of influenza neuraminidase inhibitors
por: Anuwongcharoen, Nuttapat, et al.
Publicado: (2016)