Cargando…

Endometritis Changes the Neurochemical Characteristics of the Caudal Mesenteric Ganglion Neurons Supplying the Gilt Uterus

SIMPLE SUMMARY: Uterine inflammation is a very frequent pathology in domestic animals leading to disturbances in reproductive processes and causing significant economic losses. The uterus possesses nerves from either the autonomic or sensory part of the peripheral nervous system. Most of the uterus-...

Descripción completa

Detalles Bibliográficos
Autores principales: Jana, Barbara, Całka, Jarosław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278384/
https://www.ncbi.nlm.nih.gov/pubmed/32443879
http://dx.doi.org/10.3390/ani10050891
Descripción
Sumario:SIMPLE SUMMARY: Uterine inflammation is a very frequent pathology in domestic animals leading to disturbances in reproductive processes and causing significant economic losses. The uterus possesses nerves from either the autonomic or sensory part of the peripheral nervous system. Most of the uterus-projecting neurons are localized in the caudal mesenteric ganglion. These neurons synthesize and release numerous biologically active substances in the uterus, which regulate uterine functions. The effect of inflammation on uterine innervation is poorly recognized. This study showed that Escherichia coli-induced uterine inflammation in pig led to a reduction in the total population of uterine neurons in the caudal mesenteric ganglion, and in the populations of these cells in the dorsal and central areas of this ganglion. In the caudal mesenteric ganglion of gilts after intrauterine bacterial injection, the population of uterine neurons presenting positive staining for dopamine-β-hydroxylase (an enzyme participating in noradrenaline synthesis) and negative staining for galanin, as well as the population of uterine neurons presenting negative staining for dopamine-β-hydroxylase but positive staining for neuropeptide Y, were decreased. In these gilts, there were increased numbers of uterine neurons which, besides dopamine-β-hydroxylase, also expressed neuropeptide Y, galanin and vasoactive intestinal peptide. The above changes suggest that inflammation of the gilt uterus may affect the function(s) of this organ by its action on the neurons of the caudal mesenteric ganglion. ABSTRACT: This study analyzed the influence of uterine inflammation on the neurochemical characteristics of the gilt caudal mesenteric ganglion (CaMG) uterus-supplying neurons. The horns of uteri were injected with retrograde tracer Fast Blue on day 17 of the first studied estrous cycle. Twenty-eight days later (the expected day 3 of the third studied estrous cycle), either saline or Escherichia coli suspension were administered into each uterine horn. Only the laparotomy was done in the control gilts. After 8 days, the CaMGs and uteri were harvested. The infected gilts presented a severe acute endometritis. In the CaMGs, the populations of uterine perikarya possessing dopamine-β-hydroxylase (DβH) and/or neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL) and vasoactive intestinal polypeptide (VIP) were analyzed using the double immunofluorescence method. In the CaMG, bacterial injection decreased the total number of the perikarya (Fast Blue-positive), the small and large perikarya populations in the dorsal and central regions, and the small and large perikarya populations coded DβH+/GAL- and DβH-/NPY+. After bacterial treatment, there was an increase in the numbers of small and large perikarya coded DβH+/NPY+, small perikarya coded DβH+/GAL+ and DβH+/SOM- and large perikarya coded DβH+/VIP+. To summarize, uterine inflammation influences the neurochemical characteristics of the CaMG uterus-supplying neurons, which may be important for pathologically changed organ functions.