Cargando…

Effects of Aloe arborescens Whole Plant Homogenate on Lipid Metabolism, Inflammatory Conditions and Liver Function of Dairy Cows during the Transition Period

SIMPLE SUMMARY: This study highlights the positive effect of an Aloe arborescens Mill. whole plant homogenate on the liver and renal function of dairy cows during the peripartum period. Such positive effects could depend on both anti-hyperlipidemic and anti-inflammatory effects of Aloe that could ha...

Descripción completa

Detalles Bibliográficos
Autores principales: Mezzetti, Matteo, Minuti, Andrea, Bionaz, Massimo, Piccioli-Cappelli, Fiorenzo, Trevisi, Erminio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278487/
https://www.ncbi.nlm.nih.gov/pubmed/32466290
http://dx.doi.org/10.3390/ani10050917
Descripción
Sumario:SIMPLE SUMMARY: This study highlights the positive effect of an Aloe arborescens Mill. whole plant homogenate on the liver and renal function of dairy cows during the peripartum period. Such positive effects could depend on both anti-hyperlipidemic and anti-inflammatory effects of Aloe that could have mitigated hepatic stresses that typically occur in early lactation. Our findings suggest Aloe arborescens supplementation to be an effective strategy to ameliorate adverse metabolic conditions in transition cows, indicating it as a preventive nutraceutical strategy against metabolic disorders. ABSTRACT: The anti-hyperlipidemic and anti-inflammatory effects exerted by Aloe on monogastric mammals suggest it as a potential strategy to address the tremendous metabolic alterations that affect dairy cows during their transition to calving. A group of 20 multiparous Italian Holstein dairy cows were housed in freestalls and allocated into two homogeneous groups to receive either 200 g/d of water (CTR) or 200 g/day of Aloe arborescens Mill. whole plant homogenate through a rumen tube (AAM) between −14 and 14 days from calving (DFC). From −14 to 35 DFC, the BCS, and milk yield were measured, and blood samples were collected to assess the hematochemical profile. Data underwent ANOVA testing using a mixed model for repeated measurements, including the treatment and time and their interactions as fixed effects. Compared to CTR cows, AAM cows had a less pronounced BCS loss in early lactation (p < 0.01), indicating less mobilization of body reserves. Compared to CTR cows, AAM cows had a lower plasma concentration of nonesterified fatty acids and beta hydroxybutyrate (p < 0.01 and = 0.01 respectively) that, paired with the lower butterfat content and fat/protein ratio in their milk (p = 0.03 and < 0.01 respectively), indicates that Aloe reduced the mobilization of body fats. AAM cows had a reduced concentration of myeloperoxidase in plasma and a lower SCC in milk compared to CTR cows (p = 0.02 for both), indicating an anti-inflammatory effect of Aloe. Furthermore, AAM cows had a lower plasma concentration of ceruloplasmin (p < 0.05) and higher plasma concentration of cholesterol, retinol, and paraoxonase compared to CTR cows (p < 0.01, < 0.01 and < 0.05 respectively), indicating Aloe was effective in mitigating the acute phase response in early lactation. Finally, AAM cows had lower plasma creatinine concentrations around calving (p < 0.05), a lower concentration of plasma bilirubin, and a higher concentration of plasma tocopherol compared to CTR cows (p = 0.01 for both). These data suggest Aloe has anti-hyperlipidemic and anti-inflammatory effects on transition dairy cows that could have ameliorated liver and kidney function disruption and increased the availability of body antioxidants in early lactation.